Department of Biochemistry, University of Wisconsin-Madison, Wisconsin 53706.
Department of Biochemistry, University of Wisconsin-Madison, Wisconsin 53706
Genetics. 2020 Jan;214(1):147-161. doi: 10.1534/genetics.119.302772. Epub 2019 Nov 18.
Stem cell regulation relies on extrinsic signaling from a niche plus intrinsic factors that respond and drive self-renewal within stem cells. , loss of niche signaling and loss of the intrinsic self-renewal factors might be expected to have equivalent stem cell defects. Yet this simple prediction has not been borne out for most stem cells, including germline stem cells (GSCs). The central regulators of GSCs include extrinsically acting GLP-1/Notch signaling from the niche; intrinsically acting RNA-binding proteins in the PUF family, termed FBF-1 and FBF-2 (collectively FBF); and intrinsically acting PUF partner proteins that are direct Notch targets. Abrogation of either GLP-1/Notch signaling or its targets yields an earlier and more severe GSC defect than loss of FBF-1 and FBF-2, suggesting that additional intrinsic regulators must exist. Here, we report that those missing regulators are two additional PUF proteins, PUF-3 and PUF-11 Remarkably, an ; quadruple null mutant has a GSC defect virtually identical to that of a Notch null mutant. PUF-3 and PUF-11 both affect GSC maintenance, both are expressed in GSCs, and epistasis experiments place them at the same position as FBF within the network. Therefore, action of PUF-3 and PUF-11 explains the milder GSC defect in mutants. We conclude that a "PUF hub," comprising four PUF proteins and two PUF partners, constitutes the intrinsic self-renewal node of the GSC RNA regulatory network. Discovery of this hub underscores the significance of PUF RNA-binding proteins as key regulators of stem cell maintenance.
干细胞的调控依赖于龛位的外在信号以及内在因子,这些因子响应并驱动干细胞的自我更新。人们可能预期龛位信号的丧失和内在自我更新因子的丧失会导致类似的干细胞缺陷。然而,对于大多数干细胞,包括生殖干细胞(GSCs),这种简单的预测并没有得到证实。GSCs 的核心调控因子包括来自龛位的外在作用的 GLP-1/Notch 信号;内在作用的 PUF 家族 RNA 结合蛋白,称为 FBF-1 和 FBF-2(统称为 FBF);以及内在作用的 PUF 伴侣蛋白,它们是 Notch 的直接靶标。GLP-1/Notch 信号或其靶标的缺失会导致 GSC 更早且更严重的缺陷,而 FBF-1 和 FBF-2 的缺失则更为严重,这表明必须存在其他内在调控因子。在这里,我们报告说,那些缺失的调控因子是另外两个 PUF 蛋白,PUF-3 和 PUF-11。值得注意的是,四缺失突变体的 GSC 缺陷几乎与 Notch 缺失突变体相同。PUF-3 和 PUF-11 都影响 GSC 的维持,都在 GSCs 中表达,并且上位实验将它们置于与 FBF 相同的位置在网络中。因此,PUF-3 和 PUF-11 的作用解释了 突变体中 GSC 缺陷较轻的原因。我们得出结论,一个由四个 PUF 蛋白和两个 PUF 伴侣组成的“PUF 枢纽”构成了 GSC RNA 调控网络的内在自我更新节点。这个枢纽的发现突显了 PUF RNA 结合蛋白作为干细胞维持关键调控因子的重要性。