Suppr超能文献

高通量定量从头蛋白质组学:组蛋白 H4。

High-Throughput Quantitative Top-Down Proteomics: Histone H4.

机构信息

Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX, USA.

Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.

出版信息

J Am Soc Mass Spectrom. 2019 Dec;30(12):2548-2560. doi: 10.1007/s13361-019-02350-z. Epub 2019 Nov 18.

Abstract

Proteins physiologically exist as "proteoforms" that arise from one gene and acquire additional function by post-translational modifications (PTM). When multiple PTMs coexist on single protein molecules, top-down proteomics becomes the only feasible method of characterization; however, most top-down methods have limited quantitative capacity and insufficient throughput to truly address proteoform biology. Here we demonstrate that top-down proteomics can be quantitative, reproducible, sensitive, and high throughput. The proteoforms of histone H4 are well studied both as a challenging proteoform identification problem and due to their essential role in the regulation of all eukaryotic DNA-templated processes. Much of histone H4's function is obfuscated from prevailing methods due to combinatorial mechanisms. Starting from cells or tissues, after an optimized protein purification process, the H4 proteoforms are physically separated by on-line C3 chromatography, narrowly isolated in MS1 and sequenced with ETD fragmentation. We achieve more than 30 replicates from a single 35-mm tissue culture dish by loading 55 ng of H4 on column. Parallelization and automation yield a sustained throughput of 12 replicates per day. We achieve reproducible quantitation (average biological Pearson correlations of 0.89) of hundreds of proteoforms (about 200-300) over almost six orders of magnitude and an estimated LLoQ of 0.001% abundance. We demonstrate the capacity of the method to precisely measure well-established changes with sodium butyrate treatment of SUM159 cells. We show that the data produced by a quantitative top-down method can be amenable to parametric statistical comparisons and is capable of delineating relevant biological changes at the full proteoform level.

摘要

蛋白质在生理上以“蛋白质形式”存在,这些蛋白质形式由一个基因产生,并通过翻译后修饰(PTM)获得额外的功能。当多个 PTM 共存于单个蛋白质分子上时,自上而下的蛋白质组学成为唯一可行的表征方法;然而,大多数自上而下的方法在定量能力和通量方面都存在局限性,无法真正解决蛋白质形式生物学问题。在这里,我们证明了自上而下的蛋白质组学可以是定量的、可重复的、敏感的和高通量的。组蛋白 H4 的蛋白质形式是一个具有挑战性的蛋白质形式识别问题,同时也是所有真核生物 DNA 模板过程调节的重要组成部分,因此对其进行了广泛研究。由于组合机制,组蛋白 H4 的大部分功能都被现有方法所掩盖。从细胞或组织开始,经过优化的蛋白质纯化过程后,H4 蛋白质形式通过在线 C3 色谱进行物理分离,在 MS1 中进行狭窄分离,并进行 ETD 碎裂测序。我们通过在柱上加载 55 ng 的 H4,从单个 35-mm 细胞培养皿中获得了 30 多个重复。并行化和自动化可实现每天 12 个重复的持续通量。我们实现了数百种蛋白质形式(约 200-300 种)的可重复定量(平均生物学 Pearson 相关性为 0.89),几乎跨越了六个数量级,估计的 LLoQ 为 0.001%的丰度。我们证明了该方法能够精确测量丁酸钠处理 SUM159 细胞所产生的已建立的变化。我们表明,定量自上而下方法产生的数据可以适用于参数统计比较,并能够在完整蛋白质形式水平上描绘出相关的生物学变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验