Chemistry and Nanoscience Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States.
Energy Conversion Group, Energy Technologies Area , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.
ACS Appl Mater Interfaces. 2019 Dec 18;11(50):46953-46964. doi: 10.1021/acsami.9b17614. Epub 2019 Dec 4.
In situ electrochemical diagnostics designed to probe ionomer interactions with platinum and carbon were applied to relate ionomer coverage and conformation, gleaned from anion adsorption data, with O transport resistance for low-loaded (0.05 mg cm) platinum-supported Vulcan carbon (Pt/Vu)-based electrodes in a polymer electrolyte fuel cell. Coupling the in situ diagnostic data with ex situ characterization of catalyst inks and electrode structures, the effect of ink composition is explained by both ink-level interactions that dictate the electrode microstructure during fabrication and the resulting local ionomer distribution near catalyst sites. Electrochemical techniques (CO displacement and ac impedance) show that catalyst inks with higher water content increase ionomer (sulfonate) interactions with Pt sites without significantly affecting ionomer coverage on the carbon support. Surprisingly, the higher anion adsorption is shown to have a minor impact on specific activity, while exhibiting a complex relationship with oxygen transport. Ex situ characterization of ionomer suspensions and catalyst/ionomer inks indicates that the lower ionomer coverage can be correlated with the formation of large ionomer aggregates and weaker ionomer/catalyst interactions in low-water content inks. These larger ionomer aggregates resulted in increased local oxygen transport resistance, namely, through the ionomer film, and reduced performance at high current density. In the water-rich inks, the ionomer aggregate size decreases, while stronger ionomer/Pt interactions are observed. The reduced ionomer aggregation improves transport resistance through the ionomer film, while the increased adsorption leads to the emergence of resistance at the ionomer/Pt interface. Overall, the high current density performance is shown to be a nonmonotonic function of ink water content, scaling with the local gas (H, O) transport resistance resulting from pore, thin film, and interfacial phenomena.
用于探测离聚物与铂和碳相互作用的原位电化学诊断方法被应用于将从阴离子吸附数据中得出的离聚物覆盖和构象与低负载(0.05mg cm)铂负载型 Vulcan 碳(Pt/Vu)基电极在聚合物电解质燃料电池中的 O 传输阻力相关联。将原位诊断数据与催化剂油墨和电极结构的非原位表征相结合,通过影响油墨组成的油墨级相互作用和在制造过程中决定电极微结构的相互作用以及催化剂位点附近的局部离聚物分布来解释油墨组成的影响。电化学技术(CO 置换和交流阻抗)表明,具有较高含水量的催化剂油墨会增加离聚物(磺酸盐)与 Pt 位点的相互作用,而不会显著影响碳载体上的离聚物覆盖。令人惊讶的是,较高的阴离子吸附显示出对比活性的影响较小,而与氧气传输表现出复杂的关系。对离聚物悬浮液和催化剂/离聚物油墨的非原位表征表明,较低的离聚物覆盖率与低含水量油墨中较大离聚物聚集体的形成和较弱的离聚物/催化剂相互作用相关。这些较大的离聚物聚集体导致局部氧气传输阻力增加,即通过离聚物膜,并在高电流密度下降低性能。在富含水的油墨中,离聚物聚集体的尺寸减小,同时观察到更强的离聚物/Pt 相互作用。离聚物聚集的减少改善了通过离聚物膜的传输阻力,而增加的吸附导致在离聚物/Pt 界面出现阻力。总体而言,高电流密度性能表现为油墨含水量的非单调函数,与由于孔、薄膜和界面现象而导致的局部气体(H、O)传输阻力相关。