Suppr超能文献

一种工程化的 Cas-转座子系统,用于可编程和定点 DNA 转座。

An Engineered Cas-Transposon System for Programmable and Site-Directed DNA Transpositions.

机构信息

Department of Systems Biology, Columbia University Medical Center, New York, New York.

Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Medical Center, New York, New York.

出版信息

CRISPR J. 2019 Dec;2(6):376-394. doi: 10.1089/crispr.2019.0030. Epub 2019 Nov 19.

Abstract

Efficient site-directed insertion of heterologous DNA into a genome remains an outstanding challenge. Recombinases that can integrate kilobase-sized DNA constructs are difficult to reprogram to user-defined loci, while genomic insertion using CRISPR-Cas methods relies on inefficient host DNA repair machinery. Here, we describe a Cas-Transposon (CasTn) system for genomic insertions that uses a Himar1 transposase fused to a catalytically dead dCas9 nuclease to mediate programmable, site-directed transposition. Using cell-free assays, we demonstrated that the Himar-dCas9 fusion protein increased the frequency of transposon insertion at a single targeted TA dinucleotide by >300-fold compared to a random transposase, and that site-directed transposition is dependent on target choice while robust to log-fold variations in protein and DNA concentrations. We also showed that Himar-dCas9 mediates directed transposition into plasmids in . This work highlights CasTn as a new modality for host-independent, programmable, site-directed DNA insertions.

摘要

高效的靶向基因组中外源 DNA 的插入仍然是一个突出的挑战。能够整合千碱基大小 DNA 构建体的重组酶难以重新编程到用户定义的基因座,而使用 CRISPR-Cas 方法进行基因组插入则依赖于低效的宿主 DNA 修复机制。在这里,我们描述了一种 Cas-转座酶(CasTn)系统,用于基因组插入,该系统使用融合到无催化活性的 dCas9 核酸酶的 Himar1 转座酶来介导可编程的、靶向的转座。使用无细胞测定法,我们证明与随机转座酶相比,Himar-dCas9 融合蛋白将转座子插入单个靶向 TA 二核苷酸的频率提高了>300 倍,并且靶向转座依赖于靶标选择,而对蛋白质和 DNA 浓度的对数倍变化具有很强的鲁棒性。我们还表明,Himar-dCas9 介导定向转座到. 中的质粒。这项工作突出了 CasTn 作为一种新的非宿主依赖、可编程、靶向 DNA 插入的方式。

相似文献

1
An Engineered Cas-Transposon System for Programmable and Site-Directed DNA Transpositions.
CRISPR J. 2019 Dec;2(6):376-394. doi: 10.1089/crispr.2019.0030. Epub 2019 Nov 19.
2
RNA-guided DNA insertion with CRISPR-associated transposases.
Science. 2019 Jul 5;365(6448):48-53. doi: 10.1126/science.aax9181. Epub 2019 Jun 6.
4
Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration.
Nature. 2019 Jul;571(7764):219-225. doi: 10.1038/s41586-019-1323-z. Epub 2019 Jun 12.
5
Transposase-assisted target-site integration for efficient plant genome engineering.
Nature. 2024 Jul;631(8021):593-600. doi: 10.1038/s41586-024-07613-8. Epub 2024 Jun 26.
6
Targeted DNA transposition in vitro using a dCas9-transposase fusion protein.
Nucleic Acids Res. 2019 Sep 5;47(15):8126-8135. doi: 10.1093/nar/gkz552.
8
Target site selection and remodelling by type V CRISPR-transposon systems.
Nature. 2021 Nov;599(7885):497-502. doi: 10.1038/s41586-021-04030-z. Epub 2021 Nov 10.
10
Natural and Engineered Guide RNA-Directed Transposition with CRISPR-Associated Tn7-Like Transposons.
Annu Rev Biochem. 2024 Aug;93(1):139-161. doi: 10.1146/annurev-biochem-030122-041908. Epub 2024 Jul 2.

引用本文的文献

1
Next-generation probiotics and engineered BEVs for precision therapeutics in osteoporosis.
Front Nutr. 2025 Jul 1;12:1581971. doi: 10.3389/fnut.2025.1581971. eCollection 2025.
2
Programmable gene insertion in human cells with a laboratory-evolved CRISPR-associated transposase.
Science. 2025 May 15;388(6748):eadt5199. doi: 10.1126/science.adt5199.
3
From bench to bedside: cutting-edge applications of base editing and prime editing in precision medicine.
J Transl Med. 2024 Dec 20;22(1):1133. doi: 10.1186/s12967-024-05957-3.
4
Cas9 RNP Physiochemical Analysis for Enhanced CRISPR-AuNP Assembly and Function.
bioRxiv. 2024 Apr 2:2024.04.02.586657. doi: 10.1101/2024.04.02.586657.
5
Natural and Engineered Guide RNA-Directed Transposition with CRISPR-Associated Tn7-Like Transposons.
Annu Rev Biochem. 2024 Aug;93(1):139-161. doi: 10.1146/annurev-biochem-030122-041908. Epub 2024 Jul 2.
6
Recent advances in CRISPR-Cas9-based genome insertion technologies.
Mol Ther Nucleic Acids. 2024 Feb 5;35(1):102138. doi: 10.1016/j.omtn.2024.102138. eCollection 2024 Mar 12.
7
Targeted DNA integration in human cells without double-strand breaks using CRISPR RNA-guided transposases.
bioRxiv. 2023 Mar 18:2023.03.17.533036. doi: 10.1101/2023.03.17.533036.
8
Targeted DNA integration in human cells without double-strand breaks using CRISPR-associated transposases.
Nat Biotechnol. 2024 Jan;42(1):87-98. doi: 10.1038/s41587-023-01748-1. Epub 2023 Mar 29.
9
Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases.
Nat Biotechnol. 2023 Apr;41(4):500-512. doi: 10.1038/s41587-022-01527-4. Epub 2022 Nov 24.
10
Genetically engineered bacterium: Principles, practices, and prospects.
Front Microbiol. 2022 Oct 13;13:997587. doi: 10.3389/fmicb.2022.997587. eCollection 2022.

本文引用的文献

1
Targeted DNA transposition in vitro using a dCas9-transposase fusion protein.
Nucleic Acids Res. 2019 Sep 5;47(15):8126-8135. doi: 10.1093/nar/gkz552.
2
Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration.
Nature. 2019 Jul;571(7764):219-225. doi: 10.1038/s41586-019-1323-z. Epub 2019 Jun 12.
3
RNA-guided DNA insertion with CRISPR-associated transposases.
Science. 2019 Jul 5;365(6448):48-53. doi: 10.1126/science.aax9181. Epub 2019 Jun 6.
4
Metagenomic engineering of the mammalian gut microbiome in situ.
Nat Methods. 2019 Feb;16(2):167-170. doi: 10.1038/s41592-018-0301-y. Epub 2019 Jan 14.
6
RNA-Independent DNA Cleavage Activities of Cas9 and Cas12a.
Cell Rep. 2017 Dec 26;21(13):3728-3739. doi: 10.1016/j.celrep.2017.11.100.
7
Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage.
Nature. 2017 Nov 23;551(7681):464-471. doi: 10.1038/nature24644. Epub 2017 Oct 25.
9
A programmable Cas9-serine recombinase fusion protein that operates on DNA sequences in mammalian cells.
Nucleic Acids Res. 2016 Nov 16;44(20):9758-9770. doi: 10.1093/nar/gkw707. Epub 2016 Aug 11.
10
Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage.
Nature. 2016 May 19;533(7603):420-4. doi: 10.1038/nature17946. Epub 2016 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验