Suppr超能文献

基于自然启发的压缩感知技术从随机复合测量中进行转录组分析。

Nature-Inspired Compressed Sensing for Transcriptomic Profiling From Random Composite Measurements.

出版信息

IEEE Trans Cybern. 2021 Sep;51(9):4476-4487. doi: 10.1109/TCYB.2019.2951402. Epub 2021 Sep 15.

Abstract

Transcriptomic profiling is a high-throughput approach to measure gene expression levels under different experimental conditions at different timings. With the development of the related technologies such as single-cell RNA-Seq, the dimensions of gene expression data are increased to hundreds of thousands or more for high-resolution insights. There is a long-lasting challenge in exploiting the relations between transcriptomic profiles and random composite measurements. To address it, we proposed a mathematical framework based on differential evolution (global search) with the help of compressed sensing (local search) termed as DECS. Exploiting the inherent sparse nature of gene expression data, the proposed DECS method can learn the sparse module dictionaries and levels from the low-dimensional random composite measurements for reconstructing the high-dimensional gene expression data with significant orders of magnitude (e.g. 200 × ). Several experiments were conducted to compare DECS with three benchmark methods, demonstrating that the proposed DECS outperforms the benchmark methods and can recover most of the gene expression patterns. The underlying reasons are discussed and illustrated by revealing the related mechanistic insights through extensive benchmarks on nine GSE datasets and their sensitivity analysis.

摘要

转录组谱分析是一种高通量的方法,可在不同的实验条件下和不同的时间测量基因表达水平。随着单细胞 RNA-Seq 等相关技术的发展,基因表达数据的维度增加到数十万甚至更多,以实现更高的分辨率。利用转录组谱和随机复合测量之间的关系是一个长期存在的挑战。为了解决这个问题,我们提出了一个基于差分进化(全局搜索)的数学框架,并借助压缩感知(局部搜索),称为 DECS。该方法利用基因表达数据固有的稀疏特性,从低维随机复合测量中学习稀疏模块字典和水平,以从高维基因表达数据中进行重建,其重建数据的维度显著降低(例如,200×)。进行了几项实验来比较 DECS 与三种基准方法,结果表明,所提出的 DECS 优于基准方法,可以恢复大部分基因表达模式。通过对九个 GSE 数据集及其敏感性分析进行广泛的基准测试,揭示了相关的机制见解,并讨论和说明了其潜在原因。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验