Suppr超能文献

基于分子动力学模拟探讨丙型肝炎病毒 NS3/4A 蛋白酶 D168N/Y 突变导致对帕利瑞韦耐药的机制。

Understanding of the drug resistance mechanism of hepatitis C virus NS3/4A to paritaprevir due to D168N/Y mutations: A molecular dynamics simulation perspective.

机构信息

Supramolecular Chemistry Research Unit and Department of Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand; Center of Excellence for Innovation in Chemistry (PERCH‒CIC), Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand.

Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.

出版信息

Comput Biol Chem. 2019 Dec;83:107154. doi: 10.1016/j.compbiolchem.2019.107154. Epub 2019 Nov 9.

Abstract

Hepatitis C virus (HCV) NS3/4A protease is an attractive target for the development of antiviral therapy. However, the evolution of antiviral drug resistance is a major problem for treatment of HCV infected patients. Understanding of drug-resistance mechanisms at molecular level is therefore very important for the guidance of further design of antiviral drugs with high efficiency and specificity. Paritaprevir is a potent inhibitor against HCV NS3/4A protease genotype 1a. Unfortunately, this compound is highly susceptible to the substitution at D168 in the protease. In this work, molecular dynamics simulations of paritaprevir complexed with wild-type (WT) and two mutated strains (D168 N and D168Y) were carried out. Due to such mutations, the inhibitor-protein hydrogen bonding between them was weakened and the salt-bridge network among residues R123, R155 and D168 responsible for inhibitor binding was disrupted. Moreover, the per-residue free energy decomposition suggested that the main contributions from key residues such as Q80, V132, K136, G137 and R155 were lost in the D168 N/Y mutations. These lead to a lower binding affinity of paritaprevir for D168 N/Y variants of the HCV NS3/4A protease, consistent with the experimental data. This detailed information could be useful for further design of high potency anti-HCV NS3/4A inhibitors.

摘要

丙型肝炎病毒 (HCV) NS3/4A 蛋白酶是开发抗病毒治疗的有吸引力的靶标。然而,抗病毒药物耐药性的进化是治疗 HCV 感染患者的主要问题。因此,从分子水平了解耐药机制对于指导进一步设计高效和特异性的抗病毒药物非常重要。帕利昔洛韦是一种针对 HCV NS3/4A 蛋白酶基因型 1a 的强效抑制剂。不幸的是,这种化合物非常容易受到蛋白酶中 D168 取代的影响。在这项工作中,对帕利昔洛韦与野生型 (WT) 和两种突变株 (D168N 和 D168Y) 复合物进行了分子动力学模拟。由于这些突变,抑制剂与蛋白质之间的氢键被削弱,负责抑制剂结合的残基 R123、R155 和 D168 之间的盐桥网络被破坏。此外,逐残基自由能分解表明,关键残基(如 Q80、V132、K136、G137 和 R155)的主要贡献在 D168N/Y 突变中丢失。这导致帕利昔洛韦对 HCV NS3/4A 蛋白酶 D168N/Y 变体的结合亲和力降低,与实验数据一致。这些详细信息对于进一步设计高效抗 HCV NS3/4A 抑制剂可能是有用的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验