Wen J, Kang W Y, Lin M, Li L, Li T R, Zhong Y H, Luo D H
Nation Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China.
Nation Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
Zhonghua Yi Xue Za Zhi. 2019 Nov 19;99(43):3424-3427. doi: 10.3760/cma.j.issn.0376-2491.2019.43.015.
To investigate the detection rate of pulmonary nodules and the accuracy of automated measurement in chest simulation phantom by artificial intelligent computer-aided detection of pulmonary nodules with different pre-adaptive iterative techniques (ASIR-V) in wide-spectrum CT scanning. Sixteen pulmonary nodules with different diameters, densities and shapes were placed in the chest simulation phantom from December 2017 to March 2018. The weight of ASIR-V was set at 0%, 20%, 30%, 40% and 50% respectively by using Revolution CT broadband energy spectrum scanning protocol. correlation analysis was used to analyze the dose volume CT dose index (CTDIvol) and dose length product (DLP) of each group. Scanning data were imported into Tuma Shenwei artificial pulmonary nodule analysis software to evaluate the nature of the detected nodules, and ICC was used to detect the differences among groups. With the increase of ASIR-V weight, the effective dose of patients decreased gradually. CTDIvol of five groups of radiation dose volume CT dose index was 7.93, 7.24, 5.85, 5.15, 3.76 mGy,dose-length product DLP was 379, 346, 280, 246, 179 mGy·cm.There was a linear negative correlation between ASIR-V weights and CTDIvol as well as DLP, value was-0.969, 0.01.There was no significant difference in the detection rate of pulmonary nodules between AI and physicians (0.05). There was high intraclass correlation coefficients for the diameter, volume, CT value and malignant percentage of pulmonary nodules (ICCs:0.981-1.000). Radiation dose of unenhanced chest CT scan using wide detector spectral imaging decreased with the increasing of preset ASIR-V. Lung nodule detection rate and evaluation performance can be maintained well by using ASIR-V reconstructions at lower radiation dosage.
为了研究在宽谱CT扫描中使用不同预适应迭代技术(ASIR-V)的人工智能计算机辅助检测肺结节时,胸部模拟体模中肺结节的检出率以及自动测量的准确性。2017年12月至2018年3月,在胸部模拟体模中放置了16个直径、密度和形状各异的肺结节。通过使用Revolution CT宽带能谱扫描协议,将ASIR-V的权重分别设置为0%、20%、30%、40%和50%。采用相关性分析每组的剂量体积CT剂量指数(CTDIvol)和剂量长度乘积(DLP)。将扫描数据导入图玛深维人工肺结节分析软件以评估检测到的结节的性质,并使用组内相关系数(ICC)检测组间差异。随着ASIR-V权重的增加,患者的有效剂量逐渐降低。五组辐射剂量体积CT剂量指数的CTDIvol分别为7.93、7.24、5.85、5.15、3.76 mGy,剂量长度乘积DLP分别为379、346、280、246、179 mGy·cm。ASIR-V权重与CTDIvol以及DLP之间存在线性负相关,r值分别为-0.969、-0.981,P值均<0.01。人工智能与医师之间肺结节的检出率无显著差异(P>0.05)。肺结节的直径、体积、CT值和恶性百分比具有较高的组内相关系数(ICC:0.981 - 1.000)。使用宽探测器光谱成像的胸部CT平扫辐射剂量随着预设ASIR-V的增加而降低。在较低辐射剂量下使用ASIR-V重建可以很好地保持肺结节的检测率和评估性能。