Suppr超能文献

管电压、辐射剂量和自适应统计迭代重建强度水平对超低剂量胸部 CT 中肺结节的检测和特征描述的影响。

Effects of tube voltage, radiation dose and adaptive statistical iterative reconstruction strength level on the detection and characterization of pulmonary nodules in ultra-low-dose chest CT.

机构信息

Department of Radiology, the second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.

GE HealthCare, Beijing, China.

出版信息

Cancer Imaging. 2024 Sep 15;24(1):123. doi: 10.1186/s40644-024-00770-z.

Abstract

OBJECTIVE

To explore the effects of tube voltage, radiation dose and adaptive statistical iterative reconstruction (ASiR-V) strength level on the detection and characterization of pulmonary nodules by an artificial intelligence (AI) software in ultra-low-dose chest CT (ULDCT).

MATERIALS AND METHODS

An anthropomorphic thorax phantom containing 12 spherical simulated nodules (Diameter: 12 mm, 10 mm, 8 mm, 5 mm; CT value: -800HU, -630HU, 100HU) was scanned with three ULDCT protocols: Dose-1 (70kVp:0.11mSv, 100kVp:0.10mSv), Dose-2 (70kVp:0.34mSv, 100kVp:0.32mSv), Dose-3 (70kVp:0.53mSv, 100kVp:0.51mSv). All scanning protocols were repeated five times. CT images were reconstructed using four different strength levels of ASiR-V (0%=FBP, 30%, 50%, 70%ASiR-V) with a slice thickness of 1.25 mm. The characteristics of the physical nodules were used as reference standards. All images were analyzed using a commercially available AI software to identify nodules for calculating nodule detection rate (DR) and to obtain their long diameter and short diameter, which were used to calculate the deformation coefficient (DC) and size measurement deviation percentage (SP) of nodules. DR, DC and SP of different imaging groups were statistically compared.

RESULTS

Image noise decreased with the increase of ASiR-V strength level, and the 70 kV images had lower noise under the same strength level (mean-value 70 kV: 40.14 ± 7.05 (dose 1), 27.55 ± 7.38 (dose 2), 23.88 ± 6.98 (dose 3); 100 kV: 42.36 ± 7.62 (dose 1); 30.78 ± 6.87 (dose 2); 26.49 ± 6.61 (dose 3)). Under the same dose level, there were no differences in DR between 70 kV and 100 kV (dose 1: 58.76% vs. 58.33%; dose 2: 73.33% vs. 70.83%; dose 3: 75.42% vs. 75.42%, all p > 0.05). The DR of GGNs increased significantly at dose 2 and higher (70 kV: 38.12% (dose 1), 60.63% (dose 2), 64.38% (dose 3); 100 kV: 37.50% (dose 1), 59.38% (dose 2), 66.25% (dose 3)). In general, the use of ASiR-V at higher strength levels (> 50%) and 100 kV provided better (lower) DC and SP.

CONCLUSION

Detection rates are similar between 70 kV and 100 kV scans. The 70 kV images have better noise performance under the same ASiR-V level, while images of 100 kV and higher ASiR-V levels are better in preserving the nodule morphology (lower DC and SP); the dose levels above 0.33mSv provide high sensitivity for nodules detection, especially the simulated ground glass nodules.

摘要

目的

探讨管电压、辐射剂量和自适应统计迭代重建(ASiR-V)强度水平对超低剂量胸部 CT(ULDCT)中人工智能(AI)软件检测和描绘肺结节的影响。

材料与方法

采用含有 12 个模拟结节(直径:12mm、10mm、8mm、5mm;CT 值:-800HU、-630HU、100HU)的体模进行扫描,有三个 ULDCT 方案:剂量 1(70kVp:0.11mSv,100kVp:0.10mSv)、剂量 2(70kVp:0.34mSv,100kVp:0.32mSv)、剂量 3(70kVp:0.53mSv,100kVp:0.51mSv)。所有扫描方案均重复五次。使用 ASiR-V 四种不同强度(0%=FBP,30%、50%、70%ASiR-V)进行重建,层厚为 1.25mm。使用商用 AI 软件分析所有图像,以识别结节,计算结节检出率(DR),并获得其长径和短径,用于计算结节的变形系数(DC)和大小测量偏差百分比(SP)。统计比较不同成像组的 DR、DC 和 SP。

结果

图像噪声随 ASiR-V 强度的增加而降低,同一强度下 70kV 图像噪声较低(均值:70kV:40.14±7.05(剂量 1)、27.55±7.38(剂量 2)、23.88±6.98(剂量 3);100kV:42.36±7.62(剂量 1)、30.78±6.87(剂量 2)、26.49±6.61(剂量 3))。在相同剂量水平下,70kV 和 100kV 的 DR 无差异(剂量 1:58.76%比 58.33%;剂量 2:73.33%比 70.83%;剂量 3:75.42%比 75.42%,均 p>0.05)。在剂量 2 及更高剂量下,GGN 的 DR 显著增加(70kV:38.12%(剂量 1)、60.63%(剂量 2)、64.38%(剂量 3);100kV:37.50%(剂量 1)、59.38%(剂量 2)、66.25%(剂量 3))。一般来说,使用较高强度(>50%)的 ASiR-V 和 100kV 可以获得更好的(更低)DC 和 SP。

结论

70kV 和 100kV 扫描的检出率相似。在相同的 ASiR-V 水平下,70kV 图像具有更好的噪声性能,而 100kV 及更高 ASiR-V 水平的图像在保持结节形态方面表现更好(更低的 DC 和 SP);0.33mSv 以上的剂量水平对结节检测具有较高的灵敏度,尤其是模拟磨玻璃结节。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d491/11402195/5de884c31711/40644_2024_770_Fig1_HTML.jpg

相似文献

4
Clinical value of deep learning image reconstruction on the diagnosis of pulmonary nodule for ultra-low-dose chest CT imaging.
Clin Radiol. 2024 Aug;79(8):628-636. doi: 10.1016/j.crad.2024.04.008. Epub 2024 Apr 20.
5
Deep Learning Reconstruction Shows Better Lung Nodule Detection for Ultra-Low-Dose Chest CT.
Radiology. 2022 Apr;303(1):202-212. doi: 10.1148/radiol.210551. Epub 2022 Jan 18.
10
Improving Image Quality and Nodule Characterization in Ultra-low-dose Lung CT with Deep Learning Image Reconstruction.
Acad Radiol. 2024 Jul;31(7):2944-2952. doi: 10.1016/j.acra.2024.01.010. Epub 2024 Feb 29.

引用本文的文献

本文引用的文献

1
Deep Learning Reconstruction Shows Better Lung Nodule Detection for Ultra-Low-Dose Chest CT.
Radiology. 2022 Apr;303(1):202-212. doi: 10.1148/radiol.210551. Epub 2022 Jan 18.
2
Iterative reconstruction improves image quality and reduces radiation dose in trauma protocols; A human cadaver study.
Acta Radiol Open. 2021 Nov 18;10(10):20584601211055389. doi: 10.1177/20584601211055389. eCollection 2021 Oct.
8
Evaluation of the solitary pulmonary nodule.
Intern Med J. 2019 Mar;49(3):306-315. doi: 10.1111/imj.14219.
10
Lung Cancer Screening, Version 3.2018, NCCN Clinical Practice Guidelines in Oncology.
J Natl Compr Canc Netw. 2018 Apr;16(4):412-441. doi: 10.6004/jnccn.2018.0020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验