Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany.
Bioprocess Biosyst Eng. 2020 Mar;43(3):439-456. doi: 10.1007/s00449-019-02239-x. Epub 2019 Nov 21.
Short-term parameters correlating to long-term protein stability, such as the protein cloud point temperature (T), are of interest to improve efficiency during protein product development. Such efficiency is reached if short-term parameters are obtained in a low volume and high-throughput (HT) manner. This study presents a low volume HT detection method for (sub-zero) T determination of lysozyme, as such an experimental method is not available yet. The setup consists of a cryogenic device with an automated imaging system. Measurement reproducibility (median absolute deviation of 0.2 °C) and literature-based parameter validation (Pearson correlation coefficient of 0.996) were shown by a robustness and validation study. The subsequent case study demonstrated a partial correlation between the obtained apparent T parameter and long-term protein stability as a function of lysozyme concentration, ion type, ionic strength, and freeze/thaw stress. The presented experimental setup demonstrates its ability to advance short-term strategies for efficient protein formulation development.
短期参数与长期蛋白质稳定性相关,例如蛋白质浊点温度(T),对于提高蛋白质产品开发的效率很有意义。如果能够以小体积和高通量(HT)的方式获得短期参数,就能实现这种效率。本研究提出了一种用于(亚零)T 测定的低体积 HT 检测方法,因为目前还没有这样的实验方法。该设置包括一个具有自动化成像系统的低温设备。通过稳健性和验证研究,显示了测量重复性(0.2°C 的中位数绝对偏差)和基于文献的参数验证(0.996 的皮尔逊相关系数)。随后的案例研究表明,所获得的表观 T 参数与作为溶菌酶浓度、离子类型、离子强度和冻融应力函数的长期蛋白质稳定性之间存在部分相关性。所提出的实验设置证明了其能够推进短期策略,从而有效地开发蛋白质配方。