Department of Pathology, University of California San Diego, La Jolla, CA, 92093, United States.
Department of Chemical Sciences and Technologies, Tor Vergata University of Rome, Rome, 00133, Italy.
Curr Drug Targets. 2020;21(7):647-656. doi: 10.2174/1389450120666191122101658.
The major proteases that constitute the fibrinolysis system are tightly regulated. Protease inhibitors target plasmin, the protease responsible for fibrin degradation, and the proteases that convert plasminogen into plasmin, including tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). A second mechanism by which fibrinolysis is regulated involves exosite interactions, which localize plasminogen and its activators to fibrin, extracellular matrix (ECM) proteins, and cell surfaces. Once plasmin is generated in association with cell surfaces, it may cleave transmembrane proteins, activate growth factors, release growth factors from ECM proteins, remodel ECM, activate metalloproteases, and trigger cell-signaling by cleaving receptors in the Proteaseactivated Receptor (PAR) family. These processes are all implicated in cancer. It is thus not surprising that a family of structurally diverse but functionally similar cell-surface proteins, called Plasminogen Receptors (PlgRs), which increase the catalytic efficiency of plasminogen activation, have received attention for their possible function in cancer and as targets for anticancer drug development. In this review, we consider four previously described PlgRs, including: α-enolase, annexin-A2, Plg-RKT, and cytokeratin-8, in human cancer. To compare the PlgRs, we mined transcriptome profiling data from The Cancer Genome Atlas (TCGA) and searched for correlations between PlgR expression and patient survival. In glioma, the expression of specific PlgRs correlates with tumor grade. In a number of malignancies, including glioblastoma and liver cancer, increased expression of α-enolase or annexin-A2 is associated with an unfavorable prognosis. Whether these correlations reflect the function of PlgRs as receptors for plasminogen or other activities is discussed.
构成纤维蛋白溶解系统的主要蛋白酶受到严格调节。蛋白酶抑制剂针对纤溶酶,即负责纤维蛋白降解的蛋白酶,以及将纤溶酶原转化为纤溶酶的蛋白酶,包括组织型纤溶酶原激活物(tPA)和尿激酶型纤溶酶原激活物(uPA)。纤维蛋白溶解调节的另一种机制涉及外位点相互作用,它将纤溶酶原及其激活剂定位到纤维蛋白、细胞外基质(ECM)蛋白和细胞表面。一旦与细胞表面生成纤溶酶,它就可以切割跨膜蛋白,激活生长因子,从 ECM 蛋白中释放生长因子,重塑 ECM,激活金属蛋白酶,并通过切割蛋白酶激活受体(PAR)家族中的受体触发细胞信号转导。这些过程都与癌症有关。因此,结构多样但功能相似的一组细胞表面蛋白,称为纤溶酶原受体(PlgR),它们增加纤溶酶原激活的催化效率,因其在癌症中的可能功能以及作为抗癌药物开发的靶点而受到关注,这并不奇怪。在这篇综述中,我们考虑了在人类癌症中描述的四种先前描述的 PlgR,包括:α-烯醇酶、膜联蛋白-A2、Plg-RKT 和细胞角蛋白-8。为了比较 PlgR,我们从癌症基因组图谱(TCGA)中挖掘了转录组分析数据,并搜索了 PlgR 表达与患者生存之间的相关性。在神经胶质瘤中,特定 PlgR 的表达与肿瘤分级相关。在许多恶性肿瘤中,包括神经胶质瘤和肝癌,α-烯醇酶或膜联蛋白-A2 的表达增加与预后不良相关。这些相关性是否反映了 PlgR 作为纤溶酶原受体或其他活性的功能,还有待讨论。