Suppr超能文献

基于计算机筛选和表面等离子体共振验证的程序性死亡受体 1 靶向肽。

In silico screening and surface plasma resonance-based verification of programmed death 1-targeted peptides.

机构信息

School of Life Sciences, Zhengzhou University, Zhengzhou, China.

出版信息

Chem Biol Drug Des. 2020 Mar;95(3):332-342. doi: 10.1111/cbdd.13647. Epub 2019 Dec 8.

Abstract

Programmed death 1 (PD-1) is a key immune checkpoint molecule. When it binds to programmed death-ligand 1 (PD-L1), it can negatively regulate the immune response. Therefore, blockade of the PD-1/PD-L1 interaction could unleash the power of immune system. Though successes achieved by anti-PD-1/PD-L1 antibody drugs in clinical for various cancers, many intrinsic limitations of the high molecular weight drugs require alternatives such as peptide drugs and chemical compounds. In this study, we described a novel in silico approach which was used to screen peptides from PDB database and aimed to identify peptides that have potential to bind the PD-L1 binding area of PD-1 molecule. Based on the docking poses, eight peptides were synthesized and measured for their binding abilities by surface plasma resonance technique. The K values of the synthesized peptides ranged from 10.0 to 133.0 μM. Furthermore, the binding mechanism between PD-1 and the peptides was studied. In conclusion, we established a fast and reliable screening method for peptide discovery, which could be applied for identifying peptide inhibitors of various targets. The synthesized peptides could be served as starting points for designing PD-1 drug for cancer immunotherapy.

摘要

程序性死亡受体 1(PD-1)是一种关键的免疫检查点分子。当它与程序性死亡配体 1(PD-L1)结合时,可以负向调节免疫反应。因此,阻断 PD-1/PD-L1 相互作用可以释放免疫系统的力量。尽管抗 PD-1/PD-L1 抗体药物在各种癌症的临床治疗中取得了成功,但这些高分子量药物存在许多内在局限性,需要替代品,如肽药物和化学化合物。在这项研究中,我们描述了一种新的计算方法,用于从 PDB 数据库中筛选肽,并旨在识别具有结合 PD-1 分子 PD-L1 结合区潜力的肽。基于对接构象,合成了 8 条肽,并通过表面等离子体共振技术测量了它们的结合能力。合成肽的 K 值范围为 10.0 至 133.0 μM。此外,还研究了 PD-1 与肽之间的结合机制。总之,我们建立了一种快速可靠的肽发现筛选方法,可用于鉴定各种靶标的肽抑制剂。合成的肽可以作为设计用于癌症免疫治疗的 PD-1 药物的起点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验