Suppr超能文献

通过 DNP 增强的甲基固态 NMR 光谱学探索蛋白质结构。

Exploring Protein Structures by DNP-Enhanced Methyl Solid-State NMR Spectroscopy.

机构信息

Institute of Biophysical Chemistry , Goethe University Frankfurt , 60438 Frankfurt am Main , Germany.

Institute of Physical and Theoretical Chemistry , Goethe University Frankfurt , 60438 Frankfurt am Main , Germany.

出版信息

J Am Chem Soc. 2019 Dec 18;141(50):19888-19901. doi: 10.1021/jacs.9b11195. Epub 2019 Dec 6.

Abstract

Although the rapid development of sensitivity-enhanced solid-state NMR (ssNMR) spectroscopy based on dynamic nuclear polarization (DNP) has enabled a broad range of novel applications in material and life sciences, further methodological improvements are needed to unleash the full potential of DNP-ssNMR. Here, a new methyl-based toolkit for exploring protein structures is presented, which combines signal-enhancement by DNP with heteronuclear Overhauser effect (hetNOE), carbon-carbon-spin diffusion (SD) and strategically designed isotope-labeling schemes. It is demonstrated that within this framework, methyl groups can serve as dynamic sensors for probing local molecular packing within proteins. Furthermore, they can be used as "NMR torches" to selectively enlighten their molecular environment, e.g., to selectively enhance the polarization of nuclei within residues of ligand-binding pockets. Finally, the use of C-C spin diffusion enables probing carbon-carbon distances within the subnanometer range, which bridges the gap between conventional C-ssNMR methods and EPR spectroscopy. The applicability of these methods is directly shown on a large membrane protein, the light-driven proton pump green proteorhodopsin (GPR), which offers new insight into the functional mechanism of the early step of its photocycle.

摘要

尽管基于动态核极化(DNP)的灵敏度增强固态 NMR(ssNMR)光谱学的快速发展使得在材料和生命科学中实现了广泛的新型应用,但仍需要进一步的方法改进来释放 DNP-ssNMR 的全部潜力。在这里,提出了一种新的基于甲基的蛋白质结构探索工具包,它将 DNP 增强与异核 Overhauser 效应(hetNOE)、碳-碳-自旋扩散(SD)和策略设计的同位素标记方案相结合。结果表明,在该框架内,甲基基团可以作为探测蛋白质内部局部分子堆积的动态传感器。此外,它们可用作“NMR 火炬”,选择性地照亮其分子环境,例如选择性增强配体结合口袋残基内核的极化。最后,使用 C-C 自旋扩散可以探测亚纳米范围内的碳-碳距离,从而在传统的 C-ssNMR 方法和 EPR 光谱学之间架起了桥梁。这些方法的适用性直接在一个大型膜蛋白——光驱动质子泵绿色视紫红质(GPR)上得到了展示,这为其光循环早期步骤的功能机制提供了新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验