Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan.
Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan.
Biochim Biophys Acta Proteins Proteom. 2020 Feb;1868(2):140330. doi: 10.1016/j.bbapap.2019.140330. Epub 2019 Nov 20.
Knotted proteins are some of the most fascinating examples of how linear polypeptide chains can achieve intricate topological arrangements efficiently and spontaneously. The entanglements of polypeptide chains could potentially enhance their folding stabilities. We recently reported the unprecedented mechanostability of the Gordian (5) knotted family of human ubiquitin C-terminal hydrolases (UCHs) in the context of withstanding the mechanical unfolding of the bacterial AAA+ proteasome, ClpXP; a green fluorescence protein (GFP) was fused to the N-terminus of various UCHs as a reporter of the unfolding and degradation of these topologically knotted substrates, but it also limited the ability to examine the effect of untying the knotted topology via N-terminal truncation. In this study, we directly monitored the ClpXP-mediated degradation of UCH variants by electrophoresis and quantitative imaging analyses. We demonstrated that untying of the 5 knot in UCHL1 via N-terminal truncation (UCHL1) significantly reduces its mechanostability. We further quantified the ATP expenditures of degrading different UCH variants by ClpXP. The unknotted UCHL1 underwent accelerated ClpXP-dependent proteolysis, with a 30-fold reduction in ATP consumption compared to the knotted wild type. Unlike all other known ClpXP substrates, UCHL5, which is the most resilient substrate known to date, significantly slowed down the ATP turnover rate by ClpXP. Furthermore, UCHL5 required 1000-fold more ATP to be fully degraded by ClpXP compared to GFP. Our results underscored how the complex, knotted folding topology in UCHs may interfere with the mechano-unfolding processes of the AAA+ unfoldase, ClpX.
扭结蛋白是线性多肽链如何能够高效且自发地实现复杂拓扑排列的最引人入胜的例子之一。多肽链的缠结可能会增强它们的折叠稳定性。我们最近报道了在承受细菌 AAA+蛋白酶体,ClpXP 的机械展开时,人类泛素 C 末端水解酶(UCHs)的 Gordian(5)纽结家族前所未有的机械稳定性;绿色荧光蛋白(GFP)融合到各种 UCH 的 N 末端作为这些拓扑纽结底物展开和降解的报告器,但它也限制了通过 N 末端截断解开纽结拓扑的能力。在这项研究中,我们通过电泳和定量成像分析直接监测了 ClpXP 介导的 UCH 变体的降解。我们证明了通过 N 末端截断解开 UCHL1 中的 5 个结(UCHL1)会显著降低其机械稳定性。我们进一步通过 ClpXP 量化了降解不同 UCH 变体所需的 ATP 支出。解开纽结的 UCHL1 经历了加速的 ClpXP 依赖性蛋白水解,与纽结野生型相比,ATP 消耗减少了 30 倍。与所有其他已知的 ClpXP 底物不同,UCHL5 是迄今为止已知最具弹性的底物,大大降低了 ClpXP 的 ATP 周转率。此外,与 GFP 相比,UCHL5 完全被 ClpXP 降解需要 1000 倍以上的 ATP。我们的结果强调了 UCH 中复杂的纽结折叠拓扑结构如何干扰 AAA+展开酶 ClpX 的机械展开过程。