Suppr超能文献

基于质谱的革兰氏阴性病原体新型疫苗候选物的鉴定方法。

A mass spectrometry guided approach for the identification of novel vaccine candidates in gram-negative pathogens.

机构信息

Max-Planck-Institute for Biochemistry, Martinsried, Germany.

Stanford University, School of Medicine, San Francisco, USA.

出版信息

Sci Rep. 2019 Nov 22;9(1):17401. doi: 10.1038/s41598-019-53493-8.

Abstract

Vaccination is the most effective method to prevent infectious diseases. However, approaches to identify novel vaccine candidates are commonly laborious and protracted. While surface proteins are suitable vaccine candidates and can elicit antibacterial antibody responses, systematic approaches to define surfomes from gram-negatives have rarely been successful. Here we developed a combined discovery-driven mass spectrometry and computational strategy to identify bacterial vaccine candidates and validate their immunogenicity using a highly prevalent gram-negative pathogen, Helicobacter pylori, as a model organism. We efficiently isolated surface antigens by enzymatic cleavage, with a design of experiment based strategy to experimentally dissect cell surface-exposed from cytosolic proteins. From a total of 1,153 quantified bacterial proteins, we thereby identified 72 surface exposed antigens and further prioritized candidates by computational homology inference within and across species. We next tested candidate-specific immune responses. All candidates were recognized in sera from infected patients, and readily induced antibody responses after vaccination of mice. The candidate jhp_0775 induced specific B and T cell responses and significantly reduced colonization levels in mouse therapeutic vaccination studies. In infected humans, we further show that jhp_0775 is immunogenic and activates IFNγ secretion from peripheral CD4 and CD8 T cells. Our strategy provides a generic preclinical screening, selection and validation process for novel vaccine candidates against gram-negative bacteria, which could be employed to other gram-negative pathogens.

摘要

疫苗接种是预防传染病最有效的方法。然而,寻找新的疫苗候选物的方法通常既费力又耗时。虽然表面蛋白是合适的疫苗候选物,可以引发抗细菌抗体反应,但从革兰氏阴性菌中系统地定义表面组的方法很少成功。在这里,我们开发了一种组合的发现驱动的质谱和计算策略,以鉴定细菌疫苗候选物,并使用高度流行的革兰氏阴性病原体幽门螺杆菌作为模型生物来验证它们的免疫原性。我们通过基于实验设计的策略通过酶切有效地分离表面抗原,以从细胞表面暴露的蛋白质和细胞质蛋白质中进行实验分离。在总共 1153 种定量细菌蛋白中,我们因此鉴定了 72 种表面暴露的抗原,并通过种内和种间的计算同源推断进一步对候选物进行优先级排序。接下来,我们测试了候选物特异性的免疫反应。所有候选物都在感染患者的血清中被识别,并且在对小鼠进行疫苗接种后很容易诱导抗体反应。候选物 jhp_0775 诱导了特异性 B 和 T 细胞反应,并在小鼠治疗性疫苗接种研究中显著降低了定植水平。在感染的人类中,我们进一步表明 jhp_0775 是免疫原性的,并激活了外周 CD4 和 CD8 T 细胞的 IFNγ分泌。我们的策略为针对革兰氏阴性菌的新型疫苗候选物提供了一种通用的临床前筛选、选择和验证过程,可用于其他革兰氏阴性病原体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d453/6874673/c172a97a3239/41598_2019_53493_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验