Suppr超能文献

合成 ZnO 纳米颗粒锚定生物炭复合材料,用于从放射性废水中选择性去除高锝酸盐,一种高锝酸盐的替代物。

Synthesis of ZnO nanoparticle-anchored biochar composites for the selective removal of perrhenate, a surrogate for pertechnetate, from radioactive effluents.

机构信息

School of Chemical Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China.

School of Chemical Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China.

出版信息

J Hazard Mater. 2020 Apr 5;387:121670. doi: 10.1016/j.jhazmat.2019.121670. Epub 2019 Nov 11.

Abstract

Pertechnetate (TcO-) is a component of low-activity waste (LAW) fractions of legacy nuclear waste, and the adsorption removal of TcO- from LAW effluents would greatly benefit the site remediation process. However, available adsorbent materials lack the desired combination of low cost, radiolytic stability, and high selectivity. In this study, a ZnO nanoparticle-anchored biochar composite (ZBC) was fabricated and applied to potentially separate TcO- from radioactive effluents. The as-synthesized material exhibited γ radiation resistance and superhydrophobicity, with a strong sorption capacity of 25,916 mg/kg for perrhenate (ReO-), which was used in this study as a surrogate for radioactive pertechnetate (TcO-). Additionally, the selectivity for ReO- exceeded that for the competing ions I-, NO-, NO-, SO, PO, Cu, Fe, Al, and UO. These unique features show that ZBC is capable of selectively removing ReO- from Hanford LAW melter off-gas scrubber simulant effluent. This selectivity stems from the synergistic effects of both the superhydrophobic surface of the sorbent and the inherent nature of sorbates. Furthermore, density functional theory (DFT) calculations indicated that ReO- can form stable complexes on both the (100) and (002) planes of ZnO, of which, the (002) complexes have greater stability. Electron transfer from ReO- on (002) was greater than that on (100). These phenomena may be because (002) has a lower surface energy than (100). Partial density of state (PDOS) analysis further confirms that ReO- is chemisorbed on ZBC, which agrees with the findings of the Elovich kinetic model. This work provides a feasible pathway for scale-up to produce high-efficiency and cost-effective biosorbents for the removal of radionuclides.

摘要

高锝酸盐(TcO4-)是乏核燃料(低活度废物,LAW)的组成部分,从 LAW 废水中吸附去除 TcO4-将极大地有利于现场修复过程。然而,现有的吸附材料缺乏所需的低成本、辐射稳定性和高选择性的组合。在这项研究中,制备了一种氧化锌纳米颗粒锚定的生物炭复合材料(ZBC),并将其应用于潜在地从放射性废水中分离 TcO4-。所合成的材料表现出γ辐射抗性和超疏水性,对高锝酸盐(ReO4-)的吸附容量为 25916mg/kg,本研究中使用 ReO4-作为放射性高锝酸盐(TcO4-)的替代物。此外,ReO4-的选择性超过了 I-、NO-、NO-、SO42-、PO43-、Cu2+、Fe3+、Al3+和 UO22+等竞争离子。这些独特的特性表明,ZBC 能够从 Hanford LAW 熔炉废气洗涤器模拟废水中选择性地去除 ReO4-。这种选择性源于吸附剂的超疏水性表面和吸附物的固有性质的协同作用。此外,密度泛函理论(DFT)计算表明,ReO4-可以在 ZnO 的(100)和(002)平面上形成稳定的配合物,其中(002)配合物具有更大的稳定性。ReO4-在(002)上的电子转移大于在(100)上的电子转移。这些现象可能是因为(002)的表面能比(100)低。部分态密度(PDOS)分析进一步证实,ReO4-化学吸附在 ZBC 上,这与 Elovich 动力学模型的结果一致。这项工作为生产高效、低成本的生物吸附剂去除放射性核素提供了一种可行的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验