Diego Mosquera, Carlos Guevara, Jose Aguilar
CITEC, Universidad de Guayana, Puerto Ordaz, Venezuela.
INTEC, Universidad Argentina de la Empresa, Buenos Aires, Argentina.
Heliyon. 2019 Nov 14;5(11):e02722. doi: 10.1016/j.heliyon.2019.e02722. eCollection 2019 Nov.
Eco-connectivist communities are groups of individuals with similar characteristics, which emerge in a connectivist learning process within a knowledge ecology. ARMAGAeco-c is a reflexive and autonomic middleware for the management and optimization of eco-connectivist knowledge ecologies using description, prediction and prescription models. Adaptive Learning Objects are autonomic components that seek to personalize Learning Objects according to certain contextual information, such as learning styles of the learner's, technological restrictions, among other aspects. MALO is a system that allows the management of Adaptive Learning Objects. One of the main challenges of the connectivist learning process is the adaptation of the educational context to the student needs. One of them is the learning objects. For this reason, this work has two objectives, specifying a data analytics task to determine the learning style of a student in an eco-connectivist community and, adapting instances of Adaptive Learning Objects using the learning styles of the students in the communities. We use graph theory to identify the referential member of each eco-connectivist community, and a learning paradigm detection algorithm to identify the set of activities, strategies, and tools that Adaptive Learning Objects instances should have, according to the learning style of the referential member. To test our approach, a case study is presented, which demonstrates the validity of our approach.
生态连接主义社区是由具有相似特征的个体组成的群体,它们出现在知识生态中的连接主义学习过程中。ARMAGAeco-c是一种自反性和自主性的中间件,用于使用描述、预测和处方模型来管理和优化生态连接主义知识生态。自适应学习对象是自主性组件,旨在根据某些上下文信息(如学习者的学习风格、技术限制等方面)对学习对象进行个性化设置。MALO是一个允许管理自适应学习对象的系统。连接主义学习过程的主要挑战之一是使教育环境适应学生的需求。其中之一就是学习对象。因此,这项工作有两个目标,即指定一项数据分析任务来确定生态连接主义社区中一名学生的学习风格,并使用社区中学生的学习风格来调整自适应学习对象的实例。我们使用图论来识别每个生态连接主义社区的参考成员,并使用一种学习范式检测算法来确定自适应学习对象实例应根据参考成员的学习风格而具有的活动、策略和工具集。为了测试我们的方法,我们展示了一个案例研究,该研究证明了我们方法的有效性。