Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan.
Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan.
Phys Rev Lett. 2019 Nov 1;123(18):180201. doi: 10.1103/PhysRevLett.123.180201.
We study (1+1)-dimensional SU(N) spin systems in the presence of global SU(N) rotation and lattice translation symmetries. Knowing the mixed anomaly of the two symmetries at low energy, we identify, by the anomaly matching argument, a topological index for the spin model-the total number of Young-tableau boxes of spins per unit cell modulo N-characterizing the "ingappability" of the system. A nontrivial index implies either a ground-state degeneracy in a gapped phase, which can be thought of as a field-theory version of the Lieb-Schultz-Mattis theorem, or a restriction of the possible universality classes in a critical phase, regarded as the symmetry-protected critical phases. As an example of the latter case, we show that only a class of SU(N) Wess-Zumino-Witten theories can be realized in the low-energy limit of the given lattice model in the presence of the symmetries. Similar constraints also apply when a higher global symmetry emerges in the model with a lower symmetry. Our results agree with several examples known in previous studies of SU(N) models, and predict a general constraint on the structure factor which is measurable in experiments.
我们研究了存在全局 SU(N) 旋转和晶格平移对称性的 (1+1)-维 SU(N) 自旋系统。通过了解低能下两种对称性的混合异常,我们通过异常匹配论证,为自旋模型确定了一个拓扑指标——每个单位晶格的自旋的杨-图框总数除以 N 的余数——该指标表征了系统的“不可实现性”。非平凡的指标意味着在有隙相中存在基态简并,这可以被看作是李-舒尔茨-马蒂厄定理的场论版本,或者在临界相中限制了可能的普遍类,这被视为对称保护的临界相。作为后一种情况的一个例子,我们表明,只有在给定晶格模型中存在对称性的情况下,在低能极限下才能实现一类特定的 SU(N) Wess-Zumino-Witten 理论。当模型中出现更高的全局对称性时,也会有类似的约束。我们的结果与之前 SU(N) 模型研究中的几个已知例子一致,并预测了一个可在实验中测量的结构因子的一般约束。