Yao Yuan, Li Linhao, Oshikawa Masaki, Hsieh Chang-Tse
Institute of Condensed Matter Physics, School of Physics and Astronomy, <a href="https://ror.org/0220qvk04">Shanghai Jiao Tong University</a>, Shanghai 200240, China.
Department of Physics and Astronomy, <a href="https://ror.org/00cv9y106">University of Ghent</a>, 9000 Ghent, Belgium.
Phys Rev Lett. 2024 Sep 27;133(13):136705. doi: 10.1103/PhysRevLett.133.136705.
We study quantum many-body systems in the presence of an exotic antiunitary translation or inversion symmetry involving time reversal. Based on a symmetry-twisting method and spectrum robustness, we propose that a half-integer spin chain that respects any of these two antiunitary crystalline symmetries in addition to the discrete Z_{2}×Z_{2} global spin-rotation symmetry must either be gapless or possess degenerate ground states. This explains the gaplessness of a class of chiral spin models not indicated by the Lieb-Schultz-Mattis theorem and its known extensions. Moreover, we present symmetry classes with minimal sets of generators that give nontrivial Lieb-Schultz-Mattis-type constraints, argued by the bulk-boundary correspondence in 2D symmetry-protected topological phases as well as lattice homotopy. Our results for detecting the ingappability of 1D quantum magnets from the interplay between spin-rotation symmetries and magnetic space groups are applicable to systems with a broader class of spin interactions, including Dzyaloshinskii-Moriya and triple-product interactions.
我们研究了存在涉及时间反演的奇异反幺正平移或时间反演对称性时的量子多体系统。基于一种对称性扭曲方法和能谱稳健性,我们提出,除了离散的(Z_{2}×Z_{2})全局自旋旋转对称性外,尊重这两种反幺正晶体对称性中任何一种的半整数自旋链必定要么无隙,要么具有简并基态。这解释了一类未被李布 - 舒尔茨 - 马蒂斯定理及其已知扩展所表明的手征自旋模型的无隙性。此外,我们给出了具有最小生成元集的对称类,这些生成元给出了非平凡的李布 - 舒尔茨 - 马蒂斯型约束,这是由二维对称保护拓扑相中的体 - 边界对应以及晶格同伦论证得出的。我们从自旋旋转对称性和磁空间群之间的相互作用检测一维量子磁体无能隙性的结果适用于具有更广泛自旋相互作用类别的系统,包括德扎罗辛斯基 - 莫利亚相互作用和三乘积相互作用。