Suppr超能文献

基于结构的药效团模型构建、虚拟筛选、分子对接及生物评价鉴定潜在的多聚(ADP-核糖)聚合酶-1(PARP-1)抑制剂。

Structure-Based Pharmacophore Modeling, Virtual Screening, Molecular Docking and Biological Evaluation for Identification of Potential Poly (ADP-Ribose) Polymerase-1 (PARP-1) Inhibitors.

机构信息

Department of Pharmaceutical Analysis, State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China.

出版信息

Molecules. 2019 Nov 22;24(23):4258. doi: 10.3390/molecules24234258.

Abstract

Poly (ADP-ribose) polymerase-1 (PARP-1) plays critical roles in many biological processes and is considered as a potential target for anticancer therapy. Although some PARP-1 inhibitors have been reported, their clinical application in cancer therapy is limited by some shortcomings such as weak affinity, low selectivity and adverse side effects. To identify highly potent and selective PARP-1 inhibitors, an integrated protocol that combines pharmacophore mapping, virtual screening and molecular docking was constructed. It was then used as a screening query to identify potent leads with unknown scaffolds from an in-house database. Finally, four retrieved compounds were selected for biological evaluation. Biological testing indicated that the four compounds showed strong inhibitory activities on the PARP-1 ( < 0.2 μM). MTT assay confirmed that compounds - inhibited the growth of human lung cancer A549 cells in a dose-dependent manner. The obtained compounds from this study may be potential leads for PARP-1 inhibition in the treatment of cancer.

摘要

聚(ADP-核糖)聚合酶-1(PARP-1)在许多生物过程中发挥着关键作用,被认为是癌症治疗的潜在靶点。尽管已经报道了一些 PARP-1 抑制剂,但由于亲和力弱、选择性低和不良反应等缺点,其在癌症治疗中的临床应用受到限制。为了鉴定高效和选择性的 PARP-1 抑制剂,构建了一个整合的方案,结合药效团映射、虚拟筛选和分子对接。然后,将其用作筛选查询,从内部数据库中识别具有未知支架的有效先导化合物。最后,选择了四个检索到的化合物进行生物学评估。生物学测试表明,这四个化合物对 PARP-1 具有很强的抑制活性(<0.2 μM)。MTT 测定证实,化合物 - 以剂量依赖性方式抑制人肺癌 A549 细胞的生长。本研究获得的化合物可能是治疗癌症中 PARP-1 抑制的潜在先导化合物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ebb/6930522/7f55f286d801/molecules-24-04258-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验