Suppr超能文献

使用尸体脑、三维模拟模型和术中照片对大脑半球次全切除术的解剖学理解

Anatomic Understanding of Subtotal Hemispherotomy Using Cadaveric Brain, 3-Dimensional Simulation Models, and Intraoperative Photographs.

作者信息

Uda Takehiro, Kunihiro Noritsugu, Koh Saya, Nakanishi Yoko, Nakajo Kosuke, Tanoue Yuta, Uda Hiroshi, Umaba Ryoko, Kuki Ichiro, Inoue Takeshi, Kawawaki Hisashi, Ohata Kenji

机构信息

Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan.

Department of Pediatric Neurosurgery, Osaka City General Hospital, Osaka, Japan.

出版信息

Oper Neurosurg (Hagerstown). 2020 Jun 1;18(6):E209-E218. doi: 10.1093/ons/opz354.

Abstract

BACKGROUND

When the epileptogenic foci skip the motor area, the epilepsy can be cured by surgery while preserving the motor function. This surgery has been reported as subtotal hemispherectomy. The disconnective variant of this surgery, subtotal hemispherotomy, is described.

OBJECTIVE

To demonstrate each step clearly, a cadaveric brain, 3-dimensional reconstruction and simulation model, and intraoperative photographs were used.

METHODS

A formalin-fixed cadaveric brain was dissected to show each step of this surgery. For the 3-dimensional model, several brain structures were reconstructed from preoperative images, and the surgery was simulated. Intraoperative photographs and postoperative magnetic resonance images were taken from the representative cases.

RESULTS

Temporo-parieto-occipital disconnection is performed to disconnect these lobes and the insula, limbic system, and splenium of the corpus callosum. The postcentral sulcus is the anterior border of the disconnection. Next, prefrontal disconnection is performed to disconnect the frontal lobe and the insula, frontal lobe and basal ganglia, and the anterior part of the corpus callosum. The precentral sulcus is the posterior border of the disconnection. Finally, corpus callosotomy of the central part is performed. After these steps, subtotal hemispherotomy, with preservation of the pre- and postcentral gyrus, is achieved. The 3-dimensional model clearly shows the anatomic relationships between deep brain structures. In the representative cases, postoperative motor deterioration was transient or none, and seizure-free status was achieved after surgery.

CONCLUSION

Subtotal hemispherotomy is generally difficult because of the complicated anatomy and narrow and deep surgical corridors. Combined use of these methods facilitates a clearer understanding of this surgery.

摘要

背景

当致痫灶越过运动区时,可通过手术切除致痫灶,同时保留运动功能来治愈癫痫。这种手术已被报道为次全大脑半球切除术。本文描述了该手术的离断性变体——次全大脑半球切开术。

目的

为清晰展示手术的每一步骤,使用了一具尸体脑、三维重建及模拟模型以及术中照片。

方法

解剖一具用福尔马林固定的尸体脑以展示该手术的每一步骤。对于三维模型,从术前图像重建几个脑结构,并对手术进行模拟。从代表性病例获取术中照片和术后磁共振图像。

结果

进行颞顶枕离断,以离断这些脑叶与岛叶、边缘系统及胼胝体压部。中央后沟是离断的前缘。接下来,进行额部离断,以离断额叶与岛叶、额叶与基底节以及胼胝体前部。中央前沟是离断的后缘。最后,进行中央部胼胝体切开术。经过这些步骤,实现了保留中央前回和中央后回的次全大脑半球切开术。三维模型清晰显示了深部脑结构之间的解剖关系。在代表性病例中,术后运动功能恶化是短暂的或未出现,术后达到了无癫痫发作状态。

结论

由于解剖结构复杂且手术通道狭窄深邃,次全大脑半球切开术通常具有难度。联合使用这些方法有助于更清晰地理解该手术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验