Suppr超能文献

估算校准子研究中的干预效果。

Estimating the intervention effect in calibration substudies.

机构信息

Department of Statistics and Operation Research, Tel Aviv University, Tel Aviv, Israel.

出版信息

Stat Med. 2020 Feb 10;39(3):239-251. doi: 10.1002/sim.8394. Epub 2019 Nov 26.

Abstract

Exposure assessment is often subject to measurement errors. We consider here the analysis of studies aimed at reducing exposure to potential health hazards, in which exposure is the outcome variable. In these studies, the intervention effect may be estimated using either biomarkers or self-report data, but it is not common to combine these measures of exposure. Bias in the self-reported measures of exposure is a well-known fact; however, only few studies attempt to correct it. Recently, Keogh et al addressed this problem, presenting a model for measurement error in this setting and investigating how self-report and biomarker data can be combined. Keogh et al find the maximum likelihood estimate for the intervention effect in their model via direct numerical maximization of the likelihood. Here, we exploit an alternative presentation of the model that leads us to a closed formula for the MLE and also for its variance, when the number of biomarker replicates is the same for all subjects in the substudy. The variance formula enables efficient design of such intervention studies. When the number of biomarker replicates is not constant, our approach can be used along with the EM-algorithm to quickly compute the MLE. We compare the MLE to Buonaccorsi's method (Buonaccorsi, 1996) and find that they have similar efficiency when most subjects have biomarker data, but that the MLE has clear advantages when only a small fraction of subjects has biomarker data. This conclusion extends the findings of Keogh et al (2016) and has practical importance for efficiently designing studies.

摘要

暴露评估通常会受到测量误差的影响。我们在这里考虑分析旨在降低潜在健康危害暴露的研究,其中暴露是因变量。在这些研究中,可以使用生物标志物或自我报告数据来估计干预效果,但通常不会将这些暴露测量方法结合起来。自我报告暴露测量中的偏倚是一个众所周知的事实;然而,只有少数研究试图纠正它。最近,Keogh 等人解决了这个问题,提出了一种在这种情况下测量误差的模型,并研究了如何结合自我报告和生物标志物数据。Keogh 等人通过直接对似然函数进行数值最大化,找到了他们模型中干预效果的最大似然估计。在这里,我们利用模型的另一种表示方法,得出了当子研究中所有受试者的生物标志物重复次数相同时,最大似然估计值及其方差的封闭公式。方差公式可以有效地设计此类干预研究。当生物标志物重复次数不是常数时,我们的方法可以与 EM 算法一起使用,以便快速计算最大似然估计值。我们将最大似然估计值与 Buonaccorsi 方法(Buonaccorsi,1996)进行了比较,发现当大多数受试者都有生物标志物数据时,它们的效率相似,但当只有一小部分受试者有生物标志物数据时,最大似然估计值具有明显的优势。这一结论扩展了 Keogh 等人(2016)的发现,对于有效地设计研究具有实际意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验