Suppr超能文献

具有长期抗菌活性的 rGO-MoS-Ag 纳米复合材料的简便合成。

Facile synthesis of rGO-MoS-Ag nanocomposites with long-term antimicrobial activities.

机构信息

College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China.

出版信息

Nanotechnology. 2020 Mar 20;31(12):125101. doi: 10.1088/1361-6528/ab5ba7. Epub 2019 Nov 26.

Abstract

The abuse of antibiotics has led to the emergence of numerous super resistant bacteria, which pose a serious threat to public health. Developing nanomaterials with novel modes of bactericidal activity offers the promise of fighting pathogens without the risk of causing drug resistances. Here, we used reduced graphene oxide (rGO), bulk molybdenum disulfide (MoS) and silver nitrate (AgNO) to synthesize a ternary nanocomposite, rGO-MoS-Ag, via a simple one-pot method. The resulting rGO-MoS-Ag presented as crumpled and sheet-like structures decorated with Ag nanoparticles. The minimum inhibitory concentration and minimum bactericidal concentration of rGO-MoS-Ag against Escherichia coli were 50 and 100 μg ml, while Staphylococcus aureus reacted only to twice higher concentrations of 100 and 200 μg ml, respectively. Notably, rGO-MoS-Ag exhibited better antibacterial activity towards E. coli and S. aureus than rGO, MoS, or rGO-MoS. This result can be attributed to the excellent performance of rGO-MoS-Ag in destroying the bacterial cell membrane and inducing the generation of reactive oxygen species. The Ag ion release of rGO-MoS-Ag was delayed, endowing the nanocomposite with long-term antibacterial capabilities and better biosafety. Our results indicate that the as-prepared rGO-MoS-Ag has promising potential for application in biomedicine and public health.

摘要

抗生素的滥用导致了大量超级耐药菌的出现,这对公众健康构成了严重威胁。开发具有新型杀菌活性模式的纳米材料有望在不引起耐药性风险的情况下对抗病原体。在这里,我们使用还原氧化石墨烯(rGO)、块状二硫化钼(MoS)和硝酸银(AgNO)通过简单的一锅法合成了三元纳米复合材料 rGO-MoS-Ag。所得的 rGO-MoS-Ag 呈现出皱缩的片状结构,表面装饰有 Ag 纳米颗粒。rGO-MoS-Ag 对大肠杆菌的最小抑菌浓度和最小杀菌浓度分别为 50 和 100 μg ml,而金黄色葡萄球菌仅对浓度高两倍的 100 和 200 μg ml 有反应。值得注意的是,rGO-MoS-Ag 对大肠杆菌和金黄色葡萄球菌的抗菌活性优于 rGO、MoS 或 rGO-MoS。这一结果可以归因于 rGO-MoS-Ag 在破坏细菌细胞膜和诱导活性氧产生方面的优异性能。rGO-MoS-Ag 的 Ag 离子释放被延迟,赋予了纳米复合材料长期的抗菌能力和更好的生物安全性。我们的结果表明,所制备的 rGO-MoS-Ag 在生物医学和公共卫生领域具有广阔的应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验