Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel.
Institute of Physics, University of Augsburg, Universitätsstrasse 1, 86135 Augsburg, Germany.
Phys Rev E. 2019 Oct;100(4-1):042140. doi: 10.1103/PhysRevE.100.042140.
We consider transport in two billiard models, the infinite horizon Lorentz gas and the stadium channel, presenting analytical results for the spreading packet of particles. We first obtain the cumulative distribution function of traveling times between collisions, which exhibits nonanalytical behavior. Using a renewal assumption and the Lévy walk model, we obtain the particles' probability density. For the Lorentz gas, it shows a distinguished difference when compared with the known Gaussian propagator, as the latter is valid only for extremely long times. In particular, we show plumes of particles spreading along the infinite corridors, creating power-law tails of the density. We demonstrate the slow convergence rate via summation of independent and identically distributed random variables on the border between Lévy and Gauss laws. The renewal assumption works well for the Lorentz gas with intermediate-size scattering centers, but fails for the stadium channel due to strong temporal correlations. Our analytical results are supported with numerical samplings.
我们考虑了两种弹球模型中的输运,即无限视界的洛伦兹气体和体育场通道,并给出了粒子扩展包的解析结果。我们首先得到了碰撞之间的穿越时间的累积分布函数,其表现出非解析行为。利用更新假设和 Lévy 游走模型,我们得到了粒子的概率密度。对于洛伦兹气体,与已知的高斯传播子相比,它表现出明显的差异,因为后者仅在极长时间内有效。特别是,我们展示了沿着无限走廊扩散的粒子羽流,形成密度的幂律尾部。我们通过 Lévy 和高斯定律之间的独立同分布随机变量的求和来证明收敛速度缓慢。更新假设在中等大小散射中心的洛伦兹气体中表现良好,但由于时间相关性较强,在体育场通道中失败。我们的解析结果得到了数值抽样的支持。