Kim Mi-Jin, Kang Hui-Ju, Im Won Bin, Jun Young-Si
Department of Advanced Chemicals & Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea.
Division of Materials Science and Engineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
ChemSusChem. 2020 Feb 7;13(3):574-581. doi: 10.1002/cssc.201902925. Epub 2019 Dec 30.
The growing demand for rechargeable batteries with high energy density has triggered research on batteries based on polyvalent cations such as Ca , Mg , Al , and Y . Ca is, in particular, a promising anode material as an alternative to Li because of its mechanical strength (ρ=1.55 g cm ), safety in terms of thermal runaway (m.p.=839 °C), earth-abundance (world production of 150 million tons of gypsum in 2012), high specific charge capacity (1.340 mAh g or 2.077 mAh cm ), and standard reduction potential (-2.87 V vs. normal hydrogen electrode, NHE) comparable to that of Li. As with Mg, the practical application of Ca in rechargeable batteries with organic liquid electrolytes has been hindered by the passivation layer resulting from undesirable reactions between metallic Ca and electrolytes, which precludes the possibility of reversible plating of any metal cations on Ca electrodes. Here, a battery system based on intermetallic CaLi anodes was developed. Li was used as a host for Ca through the formation of an intermetallic compound, which simultaneously enabled 1) the assembly of a rechargeable battery system with Ca anodes and liquid organic electrolytes and 2) coupling these with an earth-abundant, high-energy-density air cathode without special passivation agents. This strategy is simple and broadly applicable to the other polyvalent cations listed above, opening a new avenue to further engineer the electrode materials required for practical, efficient electrochemical energy-storage systems.
对高能量密度可充电电池不断增长的需求引发了对基于多价阳离子(如Ca、Mg、Al和Y)的电池的研究。特别是Ca,由于其机械强度(ρ = 1.55 g·cm³)、热失控安全性(熔点 = 839 °C)、在地壳中的丰富度(2012年全球石膏产量为1.5亿吨)、高比电荷容量(1.340 mAh·g或2.077 mAh·cm³)以及与Li相当的标准还原电位(相对于标准氢电极,NHE为 -2.87 V),是一种很有前景的替代Li的负极材料。与Mg一样,Ca在具有有机液体电解质的可充电电池中的实际应用受到金属Ca与电解质之间不良反应产生的钝化层的阻碍,这排除了任何金属阳离子在Ca电极上可逆电镀的可能性。在此,开发了一种基于金属间化合物CaLi负极的电池系统。通过形成金属间化合物,Li用作Ca的主体,这同时实现了1)组装具有Ca负极和液体有机电解质的可充电电池系统,以及2)将这些与富含地壳元素、高能量密度的空气正极耦合,而无需特殊的钝化剂。这种策略简单且广泛适用于上述其他多价阳离子,为进一步设计实用、高效的电化学储能系统所需的电极材料开辟了一条新途径。