Patrike Apurva, Yadav Poonam, Shelke Vilas, Shelke Manjusha
Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India.
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
ChemSusChem. 2022 Jul 21;15(14):e202200504. doi: 10.1002/cssc.202200504. Epub 2022 Jun 3.
With the development of consumer electronic devices and electric vehicles, lithium-ion batteries (LIBs) are vital components for high energy storage with great impact on our modern life. However, LIBs still cannot meet all the essential demands of rapidly growing new industries. In pursuance of higher energy requirement, metal batteries (MBs) are the next-generation high-energy-density devices. Li/Na metals are considered as an ideal anode for high-energy batteries due to extremely high theoretical specific capacity (3860 and 1165 mAh g for Li and Na, respectively) and low electrochemical potential (-3.04 V for Li and -2.71 V for Na vs. standard hydrogen electrode). Unfortunately, uncontrolled dendrite growth, high reactivity, and infinite volume change induce severe safety concerns and poor cycle efficiency during their application. Consequently, MBs are far from commercialization stage. This Review represents a comprehensive overview of failure mechanism of lithium/sodium metal anode and its progress for rechargeable batteries through (i) electrolyte optimization, (ii) artificial solid-electrolyte interphase (SEI) layer formation, and (iii) nanoengineering at materials level in current collector, anode, and host. The challenges in current MBs research and potential applications of lithium/sodium metal anodes are also outlined and summarized.
随着消费电子设备和电动汽车的发展,锂离子电池(LIBs)是高能量存储的关键组件,对我们的现代生活产生了重大影响。然而,锂离子电池仍无法满足快速发展的新行业的所有基本需求。为了追求更高的能量需求,金属电池(MBs)成为下一代高能量密度设备。锂/钠金属因其极高的理论比容量(锂为3860 mAh g,钠为1165 mAh g)和低电化学势(相对于标准氢电极,锂为-3.04 V,钠为-2.71 V),被认为是高能量电池的理想负极。不幸的是,不受控制的枝晶生长、高反应活性和无限的体积变化在其应用过程中引发了严重的安全问题和较差的循环效率。因此,金属电池远未达到商业化阶段。本综述全面概述了锂/钠金属负极的失效机制及其在可充电电池方面的进展,包括(i)电解质优化,(ii)人工固体电解质界面(SEI)层的形成,以及(iii)在集流体、负极和主体材料层面的纳米工程。同时也概述和总结了当前金属电池研究中的挑战以及锂/钠金属负极的潜在应用。