Suppr超能文献

基于 LTE 网络的指纹定位的深度学习。

Deep Learning for Fingerprint-Based Outdoor Positioning via LTE Networks.

机构信息

School of Electronic Countermeasures, National University of Defense Technology, Hefei 230000, China.

出版信息

Sensors (Basel). 2019 Nov 26;19(23):5180. doi: 10.3390/s19235180.

Abstract

Fingerprint-based positioning techniques are a hot research topic because of their satisfactory accuracy in complex environments. In this study, we adopted the deep-learning-based long-time-evolution (LTE) signal fingerprint positioning method for outdoor environment positioning. Inspired by state-of-the-art image classification methods, a novel hybrid location gray-scale image utilizing LTE signal fingerprints is proposed in this paper. In order to deal with signal fluctuations, several data enhancement methods are adopted. A hierarchical architecture is put forward during the deep neural network (DNN) training. First, the proposed positioning technique is pre-trained by a modified Deep Residual Network (Resnet) coarse localizer which is capable of learning reliable features from a set of unstable LTE signals. Then, to alleviate the tremendous collection workload, as well as further improve the positioning accuracy, by using a multilayer perceptron (MLP), a transfer learning-based fine localizer is introduced for fine-tuning the coarse localizer. The experimental data was collected from realistic scenes to meet the requirement of actual environments. The experimental results show that the proposed system leads to a considerable positioning accuracy in a variety of outdoor environments.

摘要

基于指纹的定位技术是一个热门的研究课题,因为它们在复杂环境中的定位精度令人满意。在这项研究中,我们采用了基于深度学习的长时间演进 (LTE) 信号指纹定位方法进行户外环境定位。受最新图像分类方法的启发,本文提出了一种利用 LTE 信号指纹的新型混合位置灰度图像。为了处理信号波动,采用了几种数据增强方法。在深度神经网络 (DNN) 训练过程中提出了一种分层架构。首先,通过修改的深度残差网络 (Resnet) 粗定位器对所提出的定位技术进行预训练,该粗定位器能够从一组不稳定的 LTE 信号中学习到可靠的特征。然后,为了减轻巨大的采集工作量,并进一步提高定位精度,通过使用多层感知机 (MLP),引入基于迁移学习的精细定位器对粗定位器进行微调。实验数据是从真实场景中收集的,以满足实际环境的要求。实验结果表明,该系统在各种户外环境中都能实现相当高的定位精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa0d/6928756/576e5fbe0f42/sensors-19-05180-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验