Simpson Jonathan, van Wijk Kasper, Adam Ludmila, Smith Caitlin
The Dodd-Walls Centre for Photonic and Quantum Technologies, Auckland 1010, New Zealand.
Physics of Rocks Laboratory, School of Environment, The University of Auckland, Auckland 1010, New Zealand.
Rev Sci Instrum. 2019 Nov 1;90(11):114503. doi: 10.1063/1.5120078.
We present a new noncontact methodology to excite and detect ultrasonic waves in rocks under in situ pressure and temperature conditions. Optical windows in the side of a pressure vessel allow the passage of a laser source and a receiver for noncontact laser ultrasonic measurements. A heating mantle controls the temperature, and a rotational stage inside the vessel makes it possible to obtain measurements as a function of angle. This methodology is the first to combine the advantages of laser ultrasonics (LUS) over traditional transducer methods with measurements under in situ pressure and temperature conditions. These advantages include the absence of mechanical coupling, small sampling area, and broadband recordings of absolute displacement. After describing the experimental setup, we present control experiments to validate the accuracy of this new system for acquiring rock physics data. Densely sampled rotational scans performed on an Alpine Fault ultramylonite rock reveal a decrease in P-wave anisotropy from 62% at atmospheric pressure to 36% at 16 MPa. This result highlights the importance of performing rock physics measurements under in situ confining stress and demonstrates the advantages of the methodology for investigating anisotropy. In addition, a 5.6% decrease in the P-wave velocity of the ultramylonite sample between 20 °C and 100 °C at a constant 10 MPa confining stress demonstrates the capability of this new methodology for acquiring data under both in situ pressure and temperature conditions. This new methodology opens the door for probing the pressure and temperature dependence of the elastic properties of rocks and other materials using LUS techniques.
我们提出了一种新的非接触方法,用于在原位压力和温度条件下激发和检测岩石中的超声波。压力容器侧面的光学窗口允许激光源和接收器通过,以进行非接触式激光超声测量。加热套控制温度,容器内的旋转台使得能够获得随角度变化的测量结果。这种方法首次将激光超声(LUS)相对于传统换能器方法的优势与原位压力和温度条件下的测量相结合。这些优势包括不存在机械耦合、采样面积小以及绝对位移的宽带记录。在描述了实验装置之后,我们进行了控制实验,以验证这个用于获取岩石物理数据的新系统的准确性。对一块阿尔卑斯断层超糜棱岩进行的密集采样旋转扫描显示,纵波各向异性从大气压下的62%降至16兆帕时的36%。这一结果突出了在原位围压下进行岩石物理测量的重要性,并证明了该方法在研究各向异性方面的优势。此外,在10兆帕恒定围压下,超糜棱岩样品在20℃至100℃之间纵波速度下降了5.6%,这表明这种新方法能够在原位压力和温度条件下获取数据。这种新方法为使用LUS技术探究岩石和其他材料弹性性质的压力和温度依赖性打开了大门。