Suppr超能文献

上气道组织运动对气流动力学的影响。

The effects of upper airway tissue motion on airflow dynamics.

机构信息

School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006, Australia; Department of Mechanical and Process Engineering, ETH Zürich, Zürich 8093, Switzerland.

School of Engineering, Macquarie University, NSW 2109, Australia.

出版信息

J Biomech. 2020 Jan 23;99:109506. doi: 10.1016/j.jbiomech.2019.109506. Epub 2019 Nov 14.

Abstract

The human upper airway is not only geometrically complex, but it can also deform dynamically as a result of active muscle contraction and motility during respiration. How the active transformation of the airway geometry affects airflow dynamics during respiration is not well understood despite the importance of this knowledge towards improving current understanding of particle transport and deposition. In this study, particle imaging velocimetry (PIV) measurements of the fluid dynamics are presented in a physiologically realistic human upper airway replica for (i) the undeformed case and (ii) the case where realistic soft tissue motion during breathing is emulated. Results from this study show that extrathoracic wall motion alters the flow field significantly such that the fluid dynamics is distinctly different from the undeformed airway. Distinctive flow field patterns in the physiologically realistic airway include (i) fluid recirculation at the back of the tongue and cranial to the tip of the epiglottis during mid-inspiration, (ii) horizontal and posteriorly directed flow at the back of tongue at the peak of inspiration and (iii) a more homogeneous flow across the airway downstream from the epiglottis. These findings suggest that the active deformation of the human upper airway may potentially influence particle transport and deposition at the back of the tongue and therefore, highlights the importance of considering extrathoracic wall motion in future airway flow studies. D.

摘要

人体上呼吸道不仅具有复杂的几何形状,而且由于呼吸过程中肌肉的主动收缩和运动,它还可以动态变形。尽管了解气道几何形状的主动变形如何影响呼吸期间的气流动力学对于提高目前对颗粒输运和沉积的理解非常重要,但人们对此知之甚少。在这项研究中,针对(i)未变形情况和(ii)模拟呼吸过程中真实软组织运动的情况,对上呼吸道的生理上逼真的复制品进行了流体动力学的粒子成像测速(PIV)测量。该研究的结果表明,胸外壁运动显著改变了流场,使得流体动力学明显不同于未变形气道。在生理上逼真的气道中存在独特的流场模式,包括(i)在吸气中期,舌头后部和会厌尖端颅侧处的流体再循环,(ii)吸气峰值时舌头后部的水平和向后的流动,以及(iii)会厌后气道内的流动更加均匀。这些发现表明,人体上呼吸道的主动变形可能会影响舌头后部的颗粒输运和沉积,因此强调了在未来的气道流动研究中考虑胸外壁运动的重要性。

相似文献

1
The effects of upper airway tissue motion on airflow dynamics.
J Biomech. 2020 Jan 23;99:109506. doi: 10.1016/j.jbiomech.2019.109506. Epub 2019 Nov 14.
3
Effects of respiratory rate on the fluid mechanics of a reconstructed upper airway.
Med Eng Phys. 2022 Feb;100:103746. doi: 10.1016/j.medengphy.2021.103746. Epub 2021 Dec 23.
4
Simulating the effect of individual upper airway anatomical features on drug deposition.
Int J Pharm. 2022 Nov 25;628:122219. doi: 10.1016/j.ijpharm.2022.122219. Epub 2022 Sep 28.
5
Investigation of inhalation and exhalation flow pattern in a realistic human upper airway model by PIV experiments and CFD simulations.
Biomech Model Mechanobiol. 2020 Oct;19(5):1679-1695. doi: 10.1007/s10237-020-01299-3. Epub 2020 Feb 5.
6
Regional flow and deposition variability in adult female lungs: A numerical simulation pilot study.
Clin Biomech (Bristol). 2019 Jun;66:40-49. doi: 10.1016/j.clinbiomech.2017.12.014. Epub 2018 Jan 31.
7
Obstructions in the lower airways lead to altered airflow patterns in the central airway.
Respir Physiol Neurobiol. 2020 Jan;272:103311. doi: 10.1016/j.resp.2019.103311. Epub 2019 Oct 1.
8
The effect of airway motion and breathing phase during imaging on CFD simulations of respiratory airflow.
Comput Biol Med. 2020 Dec;127:104099. doi: 10.1016/j.compbiomed.2020.104099. Epub 2020 Nov 1.
9
Realistic glottal motion and airflow rate during human breathing.
Med Eng Phys. 2015 Sep;37(9):829-39. doi: 10.1016/j.medengphy.2015.05.014. Epub 2015 Jul 7.
10
Flow visualization through particle image velocimetry in realistic model of rhesus monkey's upper airway.
Respir Physiol Neurobiol. 2018 May;251:16-27. doi: 10.1016/j.resp.2018.02.007. Epub 2018 Feb 10.

引用本文的文献

本文引用的文献

1
Airway geometry, airway flow, and particle measurement methods: implications on pulmonary drug delivery.
Expert Opin Drug Deliv. 2018 Mar;15(3):271-282. doi: 10.1080/17425247.2018.1406917. Epub 2017 Nov 22.
4
Healthy humans with a narrow upper airway maintain patency during quiet breathing by dilating the airway during inspiration.
J Physiol. 2014 Nov 1;592(21):4763-74. doi: 10.1113/jphysiol.2014.279240. Epub 2014 Sep 12.
5
Theory to predict shear stress on cells in turbulent blood flow.
PLoS One. 2014 Aug 29;9(8):e105357. doi: 10.1371/journal.pone.0105357. eCollection 2014.
6
Effects of fluid structure interaction in a three dimensional model of the spinal subarachnoid space.
J Biomech. 2014 Aug 22;47(11):2826-30. doi: 10.1016/j.jbiomech.2014.04.027. Epub 2014 Jun 20.
7
3D Slicer as an image computing platform for the Quantitative Imaging Network.
Magn Reson Imaging. 2012 Nov;30(9):1323-41. doi: 10.1016/j.mri.2012.05.001. Epub 2012 Jul 6.
8
Movement of the human upper airway during inspiration with and without inspiratory resistive loading.
J Appl Physiol (1985). 2011 Jan;110(1):69-75. doi: 10.1152/japplphysiol.00413.2010. Epub 2010 Oct 21.
9
Digital particle image velocimetry studies of nasal airflow.
Respir Physiol Neurobiol. 2008 Nov 30;163(1-3):111-20. doi: 10.1016/j.resp.2008.07.023. Epub 2008 Aug 5.
10
Models of the pulsatile hydrodynamics of cerebrospinal fluid flow in the normal and abnormal intracranial system.
Comput Methods Biomech Biomed Engin. 2007 Apr;10(2):151-7. doi: 10.1080/10255840601124753.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验