Bochenek Steffen, Scotti Andrea, Ogieglo Wojciech, Fernández-Rodríguez Miguel Ángel, Schulte M Friederike, Gumerov Rustam A, Bushuev Nikita V, Potemkin Igor I, Wessling Matthias, Isa Lucio, Richtering Walter
Institute of Physical Chemistry , RWTH Aachen University , Landoltweg 2 , 52056 Aachen , Germany.
Chemical Process Engineering , RWTH Aachen University , Forckenbeckstrasse 51 , 52064 Aachen , Germany.
Langmuir. 2019 Dec 24;35(51):16780-16792. doi: 10.1021/acs.langmuir.9b02498. Epub 2019 Dec 16.
We investigate soft, temperature-sensitive microgels at fluid interfaces. Though having an isotropic, spherical shape in bulk solution, the microgels become anisotropic upon adsorption. The structure of microgels at interfaces is described by a core-corona morphology. Here, we investigate how changing temperature across the microgel volume phase transition temperature, which leads to swelling/deswelling of the microgels in the aqueous phase, affects the phase behavior within the monolayer. We combine compression isotherms, atomic force microscopy imaging, multiwavelength ellipsometry, and computer simulations. At low compression, the interaction between adsorbed microgels is dominated by their highly stretched corona and the phase behavior of the microgel monolayers is the same. The polymer segments within the interface lose their temperature-sensitivity because of the strong adsorption to the interface. At high compression, however, the portions of the microgels that are located in the aqueous side of the interface become relevant and prevail in the microgel interactions. These portions are able to collapse and, consequently, the isostructural phase transition is altered. Thus, the temperature-dependent swelling perpendicular to the interface ("3D") affects the compressibility parallel to the interface ("2D"). Our results highlight the distinctly different behavior of soft, stimuli-sensitive microgels as compared to rigid nanoparticles.
我们研究了流体界面处的柔软、温度敏感型微凝胶。尽管微凝胶在本体溶液中呈各向同性的球形,但吸附后会变成各向异性。界面处微凝胶的结构由核-壳形态描述。在此,我们研究了在微凝胶体积相变温度范围内改变温度(这会导致微凝胶在水相中溶胀/去溶胀)如何影响单分子层内的相行为。我们结合了压缩等温线、原子力显微镜成像、多波长椭偏仪和计算机模拟。在低压缩率下,吸附的微凝胶之间的相互作用主要由其高度伸展的壳层主导,微凝胶单分子层的相行为相同。由于对界面的强烈吸附,界面内的聚合物链段失去了温度敏感性。然而,在高压缩率下,位于界面水相一侧的微凝胶部分变得重要,并在微凝胶相互作用中占主导地位。这些部分能够塌陷,因此,同构相变发生改变。因此,垂直于界面的温度依赖性溶胀(“三维”)会影响平行于界面的压缩性(“二维”)。我们的结果突出了柔软的、刺激敏感型微凝胶与刚性纳米颗粒相比截然不同的行为。