Harrer Johannes, Ciarella Simone, Rey Marcel, Löwen Hartmut, Janssen Liesbeth M C, Vogel Nicolas
Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany.
Soft Matter and Biological Physics, Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
Soft Matter. 2021 May 5;17(17):4504-4516. doi: 10.1039/d1sm00318f.
Microgels, consisting of a swollen polymer network, exhibit a more complex self-assembly behavior compared to incompressible colloidal particles, because of their ability to deform at a liquid interface or collapse upon compression. Here, we investigate the collective phase behavior of two-dimensional binary mixtures of microgels confined at the air/water interface. We use stimuli-responsive poly(N-isopropylacrylamide) microgels with different crosslinking densities, and therefore different morphologies at the interface. We find that the minority microgel population introduces lattice defects in the ordered phase of the majority population, which, in contrast to bulk studies, do not heal out by partial deswelling to accommodate in the lattice. We subsequently investigate the interfacial phase behavior of these binary interfacial assemblies under compression. The binary system exhibits three distinct isostructural solid-solid phase transitions, during which the coronae between two small particles collapse first, followed by the collapse between small-large and large-large microgel pairs. A similar hierarchy of phase transitions is found for mixtures of microgels and core-shell particles. Simulations based on augmented potentials qualitatively reproduce the experimentally observed phase transitions. We rationalize the presence of this hierarchy in phase transitions from differences in the interfacial morphology between the species: the larger coronae of softer (and therefore larger) microgels provide a higher resistance to phase transitions compared to the smaller coronae of the more crosslinked microgels and core-shell particles. The control of phase transitions via the molecular architecture further allows the formation of characteristic, flower-like defects by introducing particles with "weaker" coronae that are more prone to collapse with their neighboring particles. Our findings underline the dominating role of the corona for interfacial microgel assemblies, which acts as an energy barrier, shifting the collapse to higher surface pressures.
微凝胶由溶胀的聚合物网络组成,与不可压缩的胶体颗粒相比,表现出更复杂的自组装行为,这是因为它们能够在液体界面处变形或在压缩时塌陷。在此,我们研究了限制在空气/水界面的二维微凝胶二元混合物的集体相行为。我们使用具有不同交联密度、因此在界面处具有不同形态的刺激响应性聚(N-异丙基丙烯酰胺)微凝胶。我们发现少数微凝胶群体在多数群体的有序相中引入晶格缺陷,与本体研究不同的是,这些缺陷不会通过部分去溶胀来愈合以适应晶格。随后,我们研究了这些二元界面组装体在压缩下的界面相行为。二元体系表现出三种不同的同构固-固相变,在此期间,两个小颗粒之间的冠层首先塌陷,随后是小-大以及大-大微凝胶对之间的塌陷。对于微凝胶和核壳颗粒的混合物也发现了类似的相变层次结构。基于增强势的模拟定性地再现了实验观察到的相变。我们从物种间界面形态的差异来解释这种相变层次结构的存在:较软(因此较大)微凝胶的较大冠层比较交联微凝胶和核壳颗粒的较小冠层对相变具有更高的抗性。通过分子结构控制相变还可以通过引入具有“较弱”冠层、更容易与其相邻颗粒塌陷的颗粒来形成特征性的花状缺陷。我们的发现强调了冠层对界面微凝胶组装体的主导作用,冠层充当能量屏障,将塌陷转变为更高的表面压力。