Suppr超能文献

基于异步惯性的移位和三边测量的标签定位。

Tag Localization with Asynchronous Inertial-Based Shifting and Trilateration.

机构信息

Department of Network and Engineering Security, Jordan University of Science and Technology, Irbid 22110, Jordan.

School of Computing, Queen's University, Kingston, ON K7L 3N6, Canada.

出版信息

Sensors (Basel). 2019 Nov 27;19(23):5204. doi: 10.3390/s19235204.

Abstract

Personal Area Networks (PAN) are key topologies in pervasive Internet of Things (IoT) localization applications. In the numerous object localization techniques, centralization and synchronization between the elements are assumed. In this paper, we leverage crowdsourcing from multiple fixed and mobile elements to enhance object localization. A cooperative crowdsourcing scheme is proposed to localize mobile low power tags using distributed and mobile/fixed readers for GPS assisted environments (i.e., outdoor) and fixed readers for indoors. We propose Inertial-Based Shifting and Trilateration (IBST) technique to provide an accurate reckoning of the absolute location of mobile tags. The novelty in our technique is its capability to estimate tag locations even when the tag is not covered by three readers to perform trilateration. In addition, IBST provides scalability since no processing is required by the low power tags. IBST technique is validated through extensive simulations using MATLAB. Simulation results show that IBST consistently estimates location, while other indoor localization solutions fail to provide such estimates as the state-of-the-art techniques require localization data to be available simultaneously to provide location estimation.

摘要

个人局域网(PAN)是普及物联网(IoT)定位应用的关键拓扑结构。在众多目标定位技术中,假设元素之间存在集中化和同步。在本文中,我们利用来自多个固定和移动元素的众包来增强目标定位。提出了一种协作众包方案,使用分布式和移动/固定阅读器来定位移动低功耗标签,用于 GPS 辅助环境(即户外),以及用于室内的固定阅读器。我们提出了基于惯性的移动和三边测量(IBST)技术,以提供移动标签的绝对位置的精确推算。我们的技术的新颖之处在于,即使标签未被三个阅读器覆盖以执行三边测量,它也能够估计标签位置。此外,IBST 提供了可扩展性,因为低功耗标签不需要任何处理。通过使用 MATLAB 进行广泛的模拟,验证了 IBST 技术。仿真结果表明,IBST 始终能够估计位置,而其他室内定位解决方案则无法提供此类估计,因为最新技术需要同时提供定位数据才能进行位置估计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa1c/6928696/f1d40fbfb404/sensors-19-05204-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验