Suppr超能文献

相似文献

1
MeCP2 Represses Enhancers through Chromosome Topology-Associated DNA Methylation.
Mol Cell. 2020 Jan 16;77(2):279-293.e8. doi: 10.1016/j.molcel.2019.10.033. Epub 2019 Nov 26.
2
DNA methylation in the gene body influences MeCP2-mediated gene repression.
Proc Natl Acad Sci U S A. 2016 Dec 27;113(52):15114-15119. doi: 10.1073/pnas.1618737114. Epub 2016 Dec 13.
3
MeCP2 Represses the Rate of Transcriptional Initiation of Highly Methylated Long Genes.
Mol Cell. 2020 Jan 16;77(2):294-309.e9. doi: 10.1016/j.molcel.2019.10.032. Epub 2019 Nov 26.
4
Biochemical analysis of histone deacetylase-independent transcriptional repression by MeCP2.
J Biol Chem. 2013 Mar 8;288(10):7096-104. doi: 10.1074/jbc.M112.438697. Epub 2013 Jan 24.
5
MeCP2 binds to non-CG methylated DNA as neurons mature, influencing transcription and the timing of onset for Rett syndrome.
Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):5509-14. doi: 10.1073/pnas.1505909112. Epub 2015 Apr 13.
6
Disruption of DNA-methylation-dependent long gene repression in Rett syndrome.
Nature. 2015 Jun 4;522(7554):89-93. doi: 10.1038/nature14319. Epub 2015 Mar 11.
7
Plasticity at the DNA recognition site of the MeCP2 mCG-binding domain.
Biochim Biophys Acta Gene Regul Mech. 2019 Sep;1862(9):194409. doi: 10.1016/j.bbagrm.2019.194409. Epub 2019 Jul 26.
8
Alleviating transcriptional inhibition of the norepinephrine slc6a2 transporter gene in depolarized neurons.
J Neurosci. 2010 Jan 27;30(4):1494-501. doi: 10.1523/JNEUROSCI.4675-09.2010.
9
MeCP2 recognizes cytosine methylated tri-nucleotide and di-nucleotide sequences to tune transcription in the mammalian brain.
PLoS Genet. 2017 May 12;13(5):e1006793. doi: 10.1371/journal.pgen.1006793. eCollection 2017 May.
10
Structural basis for the ability of MBD domains to bind methyl-CG and TG sites in DNA.
J Biol Chem. 2018 May 11;293(19):7344-7354. doi: 10.1074/jbc.RA118.001785. Epub 2018 Mar 22.

引用本文的文献

1
Chromatin modifiers in neurodevelopment.
Front Mol Neurosci. 2025 May 21;18:1551107. doi: 10.3389/fnmol.2025.1551107. eCollection 2025.
2
Exploring the complexity of MECP2 function in Rett syndrome.
Nat Rev Neurosci. 2025 May 13. doi: 10.1038/s41583-025-00926-1.
5
Epigenetic Regulation and Neurodevelopmental Disorders: From MeCP2 to the TCF20/PHF14 Complex.
Genes (Basel). 2024 Dec 23;15(12):1653. doi: 10.3390/genes15121653.
7
Interaction of methyl-CpG-binding protein 2 (MeCP2) with distinct enhancers in the mouse cortex.
Nat Neurosci. 2025 Jan;28(1):62-71. doi: 10.1038/s41593-024-01808-y. Epub 2024 Nov 22.
8
The chromatin tapestry as a framework for neurodevelopment.
Genome Res. 2024 Oct 29;34(10):1477-1486. doi: 10.1101/gr.278408.123.
9
RettDb: the Rett syndrome omics database to navigate the Rett syndrome genomic landscape.
Database (Oxford). 2024 Oct 16;2024. doi: 10.1093/database/baae109.
10
Temporally distinct 3D multi-omic dynamics in the developing human brain.
Nature. 2024 Nov;635(8038):481-489. doi: 10.1038/s41586-024-08030-7. Epub 2024 Oct 9.

本文引用的文献

1
MeCP2 Represses the Rate of Transcriptional Initiation of Highly Methylated Long Genes.
Mol Cell. 2020 Jan 16;77(2):294-309.e9. doi: 10.1016/j.molcel.2019.10.032. Epub 2019 Nov 26.
2
Quantitative modelling predicts the impact of DNA methylation on RNA polymerase II traffic.
Proc Natl Acad Sci U S A. 2019 Jul 23;116(30):14995-15000. doi: 10.1073/pnas.1903549116. Epub 2019 Jul 9.
3
Sensory experience remodels genome architecture in neural circuit to drive motor learning.
Nature. 2019 May;569(7758):708-713. doi: 10.1038/s41586-019-1190-7. Epub 2019 May 8.
4
Characterization of human mosaic Rett syndrome brain tissue by single-nucleus RNA sequencing.
Nat Neurosci. 2018 Dec;21(12):1670-1679. doi: 10.1038/s41593-018-0270-6. Epub 2018 Nov 19.
6
A Single-Cell Atlas of In Vivo Mammalian Chromatin Accessibility.
Cell. 2018 Aug 23;174(5):1309-1324.e18. doi: 10.1016/j.cell.2018.06.052. Epub 2018 Aug 2.
7
Generation of Control Ligation Product Libraries for 3C Analyses.
Cold Spring Harb Protoc. 2018 Aug 1;2018(8):2018/8/pdb.prot097865. doi: 10.1101/pdb.prot097865.
8
Rett syndrome: insights into genetic, molecular and circuit mechanisms.
Nat Rev Neurosci. 2018 Jun;19(6):368-382. doi: 10.1038/s41583-018-0006-3.
9
Structural variation in the 3D genome.
Nat Rev Genet. 2018 Jul;19(7):453-467. doi: 10.1038/s41576-018-0007-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验