Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, 142290, Russia.
Institute of Biology, Komi Research Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, 167000, Russia.
Protoplasma. 2020 Mar;257(2):489-499. doi: 10.1007/s00709-019-01456-1. Epub 2019 Nov 30.
The role of α-carbonic anhydrase 4 (α-CA4) in photosynthetic machinery functioning in thylakoid membranes was studied, using Arabidopsis thaliana wild type plants (WT) and the plants with knockout of At4g20990 gene encoding α-CA4 (αCA4-mut) grown both in low light (LL, 80 μmol quanta m s) or in high light (HL, 400 μmol quanta m s). It was found that a content of PsbS protein, one of determinants of non-photochemical quenching of chlorophyll fluorescence, increased in mutants by 30% and 100% compared with WT plants in LL and in HL, respectively. Violaxanthin cycle pigments content and violaxanthin deepoxidase activity in HL were also higher in αCA4-mut than in WT plants. The content of PSII core protein, D1, when adapting to HL, decreased in WT plants and remained unchanged in mutants. This indicates, that the decrease in the content of Lhcb1 and Lhcb2 proteins in HL (Rudenko et al. Protoplasma 55(1):69-78, 2018) in WT plants resulted from decrease of both Photosystem II (PSII) complex content and content of these proteins in this complex, whereas in αCA4-mut plants from the latter process only. The absence of α-CA4 did not affect the rate of electron transport through Photosystem I (PSI) in thylakoids of mutant vs. WT, but led to 50-80% increase in the rate of electron transport from HO to Q, evidencing the location of α-CA4 close to PSII. The latter difference may raise the question about its causal connection with the difference in the D1 protein content change during adapting to increased illumination in the presence and the absence of α-CA4.
研究了叶绿体膜中光合作用机制中α-碳酸酐酶 4(α-CA4)的作用,使用拟南芥野生型植物(WT)和缺失编码α-CA4(αCA4-mut)的植物,在低光(LL,80 μmol 量子 m s)或高光(HL,400 μmol 量子 m s)下生长。结果发现,与 WT 植物相比,在 LL 和 HL 中,PsbS 蛋白(非光化学猝灭叶绿素荧光的决定因素之一)的含量在突变体中分别增加了 30%和 100%。在 HL 中, violaxanthin 循环色素含量和 violaxanthin 脱氧化酶活性也在 αCA4-mut 中高于 WT 植物。当适应 HL 时,PSII 核心蛋白 D1 的含量在 WT 植物中减少,而在突变体中保持不变。这表明,在 WT 植物中,HL 中 Lhcb1 和 Lhcb2 蛋白含量的减少(Rudenko 等人,Protoplasma 55(1):69-78,2018)既源于 PSII 复合物含量的减少,也源于该复合物中这些蛋白的含量减少,而在 αCA4-mut 植物中仅源于后者。α-CA4 的缺失不会影响 PSI 在突变体和 WT 叶绿体中的电子传递速率,但会导致 HO 到 Q 的电子传递速率增加 50-80%,表明 α-CA4 靠近 PSII。后一个差异可能会引发一个问题,即其与存在和不存在α-CA4 时适应增加光照过程中 D1 蛋白含量变化的差异之间是否存在因果关系。