Kauffman Stuart A, Jelenfi Dávid Péter, Vattay Gábor
Institute for Systems Biology, Seattle, WA 98109, USA.
Department of Physics of Complex Systems, Eötvös University, 1117 Budapest, Pázmány P. s. 1/A, Hungary.
J Theor Biol. 2020 Feb 7;486:110097. doi: 10.1016/j.jtbi.2019.110097. Epub 2019 Nov 30.
Chemical evolution is essential in understanding the origins of life. We present a theory for the evolution of molecule masses and show that small molecules grow by random diffusion and large molecules by a preferential attachment process leading eventually to life's molecules. It reproduces correctly the distribution of molecules found via mass spectroscopy for the Murchison meteorite and estimates the start of chemical evolution back to 12.8 billion years following the birth of stars and supernovae. From the Frontier mass between the random and preferential attachment dynamics the birth time of molecule families can be estimated. Amino acids emerge about 165 million years after chemical elements emerge in stars. Using the scaling of reaction rates with the distance of the molecules in space we recover correctly the few days emergence time of amino acids in the Miller-Urey experiment. The distribution of interstellar and extragalactic molecules are both consistent with the evolutionary mass distribution, and their age is estimated to 108 and 65 million years after the start of evolution. From the model, we can determine the number of different molecule compositions at the time of the emergence of Earth to be 1.6 million and the number of molecule compositions in interstellar space to a mere 719 species.
化学进化对于理解生命起源至关重要。我们提出了一种分子质量进化理论,表明小分子通过随机扩散生长,而大分子通过优先附着过程生长,最终导致生命分子的形成。它正确地再现了通过质谱法在默奇森陨石中发现的分子分布,并将化学进化的开始时间估计到恒星和超新星诞生后的128亿年。根据随机和优先附着动力学之间的前沿质量,可以估计分子家族的诞生时间。氨基酸在化学元素在恒星中出现后约1.65亿年出现。利用反应速率与分子在空间中距离的标度关系,我们正确地恢复了米勒-尤里实验中氨基酸几天的出现时间。星际和星系外分子的分布都与进化质量分布一致,它们的年龄估计在进化开始后的1.08亿年和6500万年。从该模型中,我们可以确定地球出现时不同分子组成的数量为160万种,而星际空间中分子组成的数量仅为719种。