Suppr超能文献

最优固态神经元。

Optimal solid state neurons.

机构信息

Department of Physics, University of Bath, Claverton Down, Bath, BA2 7AY, UK.

School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK.

出版信息

Nat Commun. 2019 Dec 3;10(1):5309. doi: 10.1038/s41467-019-13177-3.

Abstract

Bioelectronic medicine is driving the need for neuromorphic microcircuits that integrate raw nervous stimuli and respond identically to biological neurons. However, designing such circuits remains a challenge. Here we estimate the parameters of highly nonlinear conductance models and derive the ab initio equations of intracellular currents and membrane voltages embodied in analog solid-state electronics. By configuring individual ion channels of solid-state neurons with parameters estimated from large-scale assimilation of electrophysiological recordings, we successfully transfer the complete dynamics of hippocampal and respiratory neurons in silico. The solid-state neurons are found to respond nearly identically to biological neurons under stimulation by a wide range of current injection protocols. The optimization of nonlinear models demonstrates a powerful method for programming analog electronic circuits. This approach offers a route for repairing diseased biocircuits and emulating their function with biomedical implants that can adapt to biofeedback.

摘要

生物电子医学正在推动对神经形态微电路的需求,这种微电路能够整合原始的神经刺激,并与生物神经元做出相同的反应。然而,设计这样的电路仍然是一个挑战。在这里,我们估计了高度非线性电导模型的参数,并推导出了模拟固态电子学中所包含的细胞内电流和膜电压的初始方程。通过用从大规模电生理记录同化中估计的参数来配置固态神经元的单个离子通道,我们成功地在计算机中传输了海马体和呼吸神经元的完整动力学。在受到各种电流注入方案的刺激时,固态神经元的反应几乎与生物神经元完全相同。非线性模型的优化展示了一种用于编程模拟电子电路的强大方法。这种方法为修复患病的生物电路并使用能够适应生物反馈的生物医学植入物来模拟其功能提供了一种途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b507/6890780/aef1c5210f4b/41467_2019_13177_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验