Suppr超能文献

自组织类蛋白质-肌动蛋白网络:结构与电压动力学

Self-Organizing Proteinoid-Actin Networks: Structure and Voltage Dynamics.

作者信息

Mougkogiannis Panagiotis, Adamatzky Andrew

机构信息

Unconventional Computing Laboratory, University of the West of England, Bristol BS16 1QY, U.K.

出版信息

ACS Omega. 2025 May 5;10(18):18986-19009. doi: 10.1021/acsomega.5c01141. eCollection 2025 May 13.

Abstract

Proteinoids are thermal proteins produced by heating amino acids to their melting point and initiation of polymerization to produce polymeric chains. Proteinoids swell in aqueous solution forming hollow microspheres, usually filled with aqueous solution. The microspheres produce spikes of electrical potential similar to the action potentials of living neurons. The cytoskeletal protein actin is known in its filamentous form as F-actin. Filaments are organized in a double helix structure consisting of polymerized globular actin monomers. Actin is a protein that is abundantly expressed in all eukaryotic cells and plays a crucial role in cellular functions by forming an intracellular scaffold, actuators, and pathways for information transfer and processing. We produce and study proteinoid-actin networks as physical models of primitive neurons. We look at their structure and electrical dynamics. We use scanning electron microscopy and multichannel electrical recordings to study microsphere assemblies. They have distinct surface features, including ion channel-like pores. The proteinoid-actin mixture exhibits enhanced electrical properties compared to its individual components. Its conductivity (σ = 4.68 × 10 S/cm) is higher than those of both pure actin (σ = 1.23 × 10 S/cm) and pure proteinoid (σ = 2.45 × 10 S/cm). The increased conductivity and new oscillatory patterns suggest a synergy. They indicate a synergy between the proteinoid and actin components in the mixture. Multichannel analysis reveals type I regular spiking in proteinoid networks (Δ ≈ 50 mV, τ = 52.4 s), type II excitability in actin ( ≈ 40 mV), and bistable dynamics in the mixture. These findings suggest that proteinoid-actin complexes can form primitive bioelectrical systems. This might lead to the better understanding of the evolution of the primordial neural system.

摘要

类蛋白是通过将氨基酸加热至熔点并引发聚合反应以产生聚合物链而生成的热蛋白。类蛋白在水溶液中膨胀形成中空微球,通常填充有水溶液。这些微球产生类似于活神经元动作电位的电位尖峰。细胞骨架蛋白肌动蛋白以其丝状形式被称为F-肌动蛋白。细丝以由聚合的球状肌动蛋白单体组成的双螺旋结构排列。肌动蛋白是一种在所有真核细胞中大量表达的蛋白质,通过形成细胞内支架、致动器以及信息传递和处理途径,在细胞功能中发挥关键作用。我们制备并研究类蛋白-肌动蛋白网络,将其作为原始神经元的物理模型。我们观察它们的结构和电动力学。我们使用扫描电子显微镜和多通道电记录来研究微球组装体。它们具有独特的表面特征,包括类似离子通道的孔隙。与单独的组分相比,类蛋白-肌动蛋白混合物表现出增强的电学性质。其电导率(σ = 4.68×10 S/cm)高于纯肌动蛋白(σ = 1.23×10 S/cm)和纯类蛋白(σ = 2.45×10 S/cm)。电导率的增加和新的振荡模式表明存在协同作用。它们表明混合物中类蛋白和肌动蛋白组分之间存在协同作用。多通道分析揭示了类蛋白网络中的I型规则尖峰(Δ≈50 mV,τ = 52.4 s)、肌动蛋白中的II型兴奋性(≈40 mV)以及混合物中的双稳态动力学。这些发现表明类蛋白-肌动蛋白复合物可以形成原始生物电系统。这可能有助于更好地理解原始神经系统的进化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7fa/12079275/49caaf2649f4/ao5c01141_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验