Huang Wei, Wu Shuqi, Gu Xiangwei, Li Yao, Okazawa Atsushi, Kojima Norimichi, Hayami Shinya, Baker Michael L, Bencok Peter, Noguchi Mariko, Miyazaki Yuji, Nakano Motohiro, Nakanishi Takumi, Kanegawa Shinji, Inagaki Yuji, Kawae Tatsuya, Zhuang Gui-Lin, Shiota Yoshihito, Yoshizawa Kazunari, Wu Dayu, Sato Osamu
Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
Nat Commun. 2019 Dec 3;10(1):5510. doi: 10.1038/s41467-019-13279-y.
The study of transition metal clusters exhibiting fast electron hopping or delocalization remains challenging, because intermetallic communications mediated through bridging ligands are normally weak. Herein, we report the synthesis of a nanosized complex, [Fe(Tp)(CN)][Fe(HO)(DMSO)] (abbreviated as [Fe], Tp, hydrotris(pyrazolyl)borate; DMSO, dimethyl sulfoxide), which has a fluctuating valence due to two mobile d-electrons in its atomic layer shell. The rate of electron transfer of [Fe] complex demonstrates the Arrhenius-type temperature dependence in the nanosized spheric surface, wherein high-spin centers are ferromagnetically coupled, producing an S = 14 ground state. The electron-hopping rate at room temperature is faster than the time scale of Mössbauer measurements (<~10 s). Partial reduction of N-terminal high spin Fe sites and electron mediation ability of CN ligands lead to the observation of both an extensive electron transfer and magnetic coupling properties in a precisely atomic layered shell structure of a nanosized [Fe] complex.
研究具有快速电子跳跃或离域现象的过渡金属簇仍然具有挑战性,因为通过桥连配体介导的金属间通信通常较弱。在此,我们报道了一种纳米级配合物[Fe(Tp)(CN)][Fe(HO)(DMSO)](简称为[Fe],Tp为氢三(吡唑基)硼酸盐;DMSO为二甲基亚砜)的合成,该配合物由于其原子层壳层中的两个可移动d电子而具有可变价态。[Fe]配合物的电子转移速率在纳米球形表面呈现出阿伦尼乌斯型温度依赖性,其中高自旋中心通过铁磁耦合,产生S = 14的基态。室温下的电子跳跃速率快于穆斯堡尔测量的时间尺度(<~10 秒)。N端高自旋Fe位点的部分还原以及CN配体的电子介导能力,使得在纳米级[Fe]配合物精确的原子层壳结构中同时观察到广泛的电子转移和磁耦合性质。