Suppr超能文献

用于离体心脏灌注的可调后负荷模块的实现

The Implementation of an Adjustable Afterload Module for Ex Situ Heart Perfusion.

作者信息

Gellner Bryan, Xin Liming, Ribeiro Roberto Vanin Pinto, Bissoondath Ved, Lu Pengzhou, Adamson Mitchell B, Yu Frank, Paradiso Emanuela, Zu Jean, Simmons Craig A, Badiwala Mitesh V

机构信息

Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, Canada.

Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada.

出版信息

Cardiovasc Eng Technol. 2020 Feb;11(1):96-110. doi: 10.1007/s13239-019-00447-w. Epub 2019 Dec 3.

Abstract

PURPOSE

Windkessel impedance analysis has proven to be an effective technique for instituting artificial afterload on ex situ hearts. Traditional fixed parameter afterload modules, however, are unable to handle the changing contractile conditions associated with prolonged ex situ heart perfusion. In this paper, an adjustable afterload module is described comprising of three fully adjustable sub-components: a systemic resistor, a proximal resistor and a compliance chamber.

METHODS

Using a centrifugal pump, the systemic resistor and compliance chamber were subjected to testing across their operating ranges, whereby the predictability of resistance and compliance values was evaluated. The components were then assembled, and the full module tested on three separate porcine hearts perfused for 6 h with success defined by the ability to maintain physiological systolic and diastolic aortic pressures across flow rate variability.

RESULTS

For both the systemic resistor and compliance chamber, experimental measurements agreed with their theoretical equivalents, with coefficients of determination of 0.99 and 0.97 for the systemic resistor and compliance chamber, respectively. During ex situ perfusion, overall 95% confidence intervals demonstrate that physiological systolic (95-96.21 mmHg) and diastolic (26.8-28.8 mmHg) pressures were successfully maintained, despite large variability in aortic flow. Left ventricular contractile parameters, were found to be in line with those in previous studies, suggesting the afterload module has no detrimental impact on functional preservation.

CONCLUSIONS

We conclude that due to the demonstrable control of our afterload module, we can maintain physiological aortic pressures in a passive afterload working mode across prolonged perfusion periods, enabling effective perfusion regardless of contractile performance.

摘要

目的

风箱阻抗分析已被证明是一种对离体心脏施加人工后负荷的有效技术。然而,传统的固定参数后负荷模块无法应对与长时间离体心脏灌注相关的不断变化的收缩条件。本文描述了一种可调节的后负荷模块,它由三个完全可调节的子组件组成:一个体循环电阻器、一个近端电阻器和一个顺应性腔室。

方法

使用离心泵,对体循环电阻器和顺应性腔室在其工作范围内进行测试,从而评估电阻和顺应性值的可预测性。然后将这些组件组装起来,并在三个单独的猪心脏上对整个模块进行测试,灌注6小时,成功的定义是能够在流速变化的情况下维持生理收缩压和舒张压主动脉压力。

结果

对于体循环电阻器和顺应性腔室,实验测量结果与它们的理论等效值一致,体循环电阻器和顺应性腔室的决定系数分别为0.99和0.97。在离体灌注期间,总体95%置信区间表明,尽管主动脉流量变化很大,但仍成功维持了生理收缩压(95 - 96.21 mmHg)和舒张压(26.8 - 28.8 mmHg)。发现左心室收缩参数与先前研究中的参数一致,这表明后负荷模块对功能保存没有不利影响。

结论

我们得出结论,由于我们的后负荷模块具有可证明的控制能力,我们可以在被动后负荷工作模式下在长时间灌注期间维持生理主动脉压力,无论收缩性能如何都能实现有效灌注。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验