Pharmazeutisches Institut, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.
Department of Biology, University of Konstanz, Universitätsstr. 10, 78457, Constance, Germany.
Eur Biophys J. 2020 Jan;49(1):39-57. doi: 10.1007/s00249-019-01411-1. Epub 2019 Dec 4.
HasR in the outer membrane of Serratia marcescens binds secreted, heme-loaded HasA and translocates the heme to the periplasm to satisfy the cell's demand for iron. The previously published crystal structure of the wild-type complex showed HasA in a very specific binding arrangement with HasR, apt to relax the grasp on the heme and assure its directed transfer to the HasR-binding site. Here, we present a new crystal structure of the heme-loaded HasA arranged with a mutant of HasR, called double mutant (DM) in the following that seemed to mimic a precursor stage of the abovementioned final arrangement before heme transfer. To test this, we performed first molecular dynamics (MD) simulations starting at the crystal structure of the complex of HasA with the DM mutant and then targeted MD simulations of the entire binding process beginning with heme-loaded HasA in solution. When the simulation starts with the former complex, the two proteins in most simulations do not dissociate. When the mutations are reverted to the wild-type sequence, dissociation and development toward the wild-type complex occur in most simulations. This indicates that the mutations create or enhance a local energy minimum. In the targeted MD simulations, the first protein contacts depend upon the chosen starting position of HasA in solution. Subsequently, heme-loaded HasA slides on the external surface of HasR on paths that converge toward the specific arrangement apt for heme transfer. The targeted simulations end when HasR starts to relax the grasp on the heme, the subsequent events being in a time regime inaccessible to the available computing power. Interestingly, none of the ten independent simulation paths visits exactly the arrangement of HasA with HasR seen in the crystal structure of the mutant. Two factors which do not exclude each other could explain these observations: the double mutation creates a non-physiologic potential energy minimum between the two proteins and /or the target potential in the simulation pushes the system along paths deviating from the low-energy paths of the native binding processes. Our results support the former view, but do not exclude the latter possibility.
粘质沙雷氏菌外膜上的 HasR 与分泌的、载血红素的 HasA 结合,并将血红素转运到周质以满足细胞对铁的需求。先前发表的野生型复合物的晶体结构显示,HasA 与 HasR 形成非常特殊的结合排列,易于放松对血红素的控制,并确保其定向转移到 HasR 结合位点。在这里,我们展示了一个新的晶体结构,其中载血红素的 HasA 与一种称为双突变体(DM)的 HasR 突变体结合,这种突变体似乎模拟了血红素转移前上述最终排列的前体阶段。为了验证这一点,我们首先从 HasA 与 DM 突变体复合物的晶体结构开始进行分子动力学(MD)模拟,然后从载血红素的 HasA 在溶液中的整个结合过程开始进行靶向 MD 模拟。当模拟从前者复合物开始时,在大多数模拟中,两种蛋白质不会解离。当突变体恢复为野生型序列时,在大多数模拟中,解离并向野生型复合物发展。这表明突变体创造或增强了局部能量最小值。在靶向 MD 模拟中,第一个蛋白质接触取决于 HasA 在溶液中的起始位置。随后,载血红素的 HasA 在趋于血红素转移的特定排列的路径上在 HasR 的外表面上滑动。当 HasR 开始放松对血红素的控制时,靶向模拟结束,随后的事件处于可用计算能力无法访问的时间范围。有趣的是,在十个独立的模拟路径中,没有一个路径完全访问到突变体晶体结构中观察到的 HasA 与 HasR 的排列。两种相互不排斥的因素可以解释这些观察结果:双突变在两种蛋白质之间产生非生理的势能最小值,或者模拟中的目标势能沿偏离天然结合过程的低能路径推动系统。我们的结果支持前一种观点,但不排除后一种可能性。