AMPEL BioSolutions LLC, Charlottesville, VA, USA; RILITE Foundation, Charlottesville, VA, USA.
AMPEL BioSolutions LLC, Charlottesville, VA, USA; RILITE Foundation, Charlottesville, VA, USA.
J Autoimmun. 2020 Jun;110:102359. doi: 10.1016/j.jaut.2019.102359. Epub 2019 Dec 2.
Systemic lupus erythematosus (SLE) is a chronic, systemic autoimmune disease that causes damage to multiple organ systems. Despite decades of research and available murine models that capture some aspects of the human disease, new treatments for SLE lag behind other autoimmune diseases such as Rheumatoid Arthritis and Crohn's disease. Big data genomic assays have transformed our understanding of SLE by providing important insights into the molecular heterogeneity of this multigenic disease. Gene wide association studies have demonstrated more than 100 risk loci, supporting a model of multiple genetic hits increasing SLE risk in a non-linear fashion, and providing evidence of ancestral diversity in susceptibility loci. Epigenetic studies to determine the role of methylation, acetylation and non-coding RNAs have provided new understanding of the modulation of gene expression in SLE patients and identified new drug targets and biomarkers for SLE. Gene expression profiling has led to a greater understanding of the role of myeloid cells in the pathogenesis of SLE, confirmed roles for T and B cells in SLE, promoted clinical trials based on the prominent interferon signature found in SLE patients, and identified candidate biomarkers and cellular signatures to further drug development and drug repurposing. Gene expression studies are advancing our understanding of the underlying molecular heterogeneity in SLE and providing hope that patient stratification will expedite new therapies based on personal molecular signatures. Although big data analyses present unique interpretation challenges, both computationally and biologically, advances in machine learning applications may facilitate the ability to predict changes in SLE disease activity and optimize therapeutic strategies.
系统性红斑狼疮(SLE)是一种慢性、全身性自身免疫性疾病,可导致多器官系统受损。尽管数十年来的研究和现有的可捕捉人类疾病某些方面的鼠类模型取得了进展,但 SLE 的新疗法仍落后于类风湿关节炎和克罗恩病等其他自身免疫性疾病。大数据基因组检测通过为这种多基因疾病的分子异质性提供重要见解,改变了我们对 SLE 的认识。全基因组关联研究已经证明了超过 100 个风险位点,支持了一种多基因打击增加 SLE 风险的非线性模型,并为易感位点的祖先多样性提供了证据。确定甲基化、乙酰化和非编码 RNA 作用的表观遗传学研究为了解 SLE 患者基因表达的调控提供了新的认识,并确定了 SLE 的新药物靶点和生物标志物。基因表达谱分析使人们更深入地了解髓样细胞在 SLE 发病机制中的作用,证实了 T 细胞和 B 细胞在 SLE 中的作用,促进了基于 SLE 患者中发现的突出干扰素特征的临床试验,并确定了候选生物标志物和细胞特征,以进一步进行药物开发和药物再利用。基因表达研究正在深入了解 SLE 中潜在的分子异质性,并为基于个人分子特征加速新疗法的发展提供了希望。尽管大数据分析提出了独特的解释挑战,无论是在计算上还是在生物学上,机器学习应用的进步都可能有助于预测 SLE 疾病活动的变化,并优化治疗策略。
Eur J Immunol. 2019-2-25
Trends Mol Med. 2021-2
Curr Opin Rheumatol. 2014-9
J Autoimmun. 2016-7-6
J Biomed Biotechnol. 2011
Semin Immunopathol. 2022-1
Nat Rev Rheumatol. 2025-8-26
Front Immunol. 2025-6-27
MedComm (2020). 2025-6-16
Lupus Sci Med. 2025-4-8
Front Cell Infect Microbiol. 2024-12-3