Suppr超能文献

一种用于预测乳腺癌患者无远处转移生存期的新型列线图的开发与验证

Development and validation of a novel nomogram for predicting distant metastasis-free survival among breast cancer patients.

作者信息

Wang Yan, Yang Yaping, Chen Zhengbo, Zhu Teng, Wu Jiannan, Su Fengxi, Deng Heran

机构信息

Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.

Department of Breast Surgery, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.

出版信息

Ann Transl Med. 2019 Oct;7(20):537. doi: 10.21037/atm.2019.10.10.

Abstract

BACKGROUND

Distant metastasis (DM) from breast cancer has a poor prognosis. Our objective was to develop and validate a nomogram to predict individual distant metastasis-free survival (DMFS) and risk stratification in non-metastatic breast cancer patients.

METHODS

A nomogram was based on an analysis of 1,201 breast cancer patients treated at Sun Yat-sen Memorial Hospital from 2001 to 2014. Using univariate and multivariate analyses to identify the predictors, this model was externally validated in an independent cohort of 538 patients from the Guangdong General Hospital between 2004 and 2012. The predictive discrimination and calibration ability of this nomogram were assessed using concordance index (C-index), risk group stratification, and calibration curve.

RESULTS

The 5-year DMFS in the training and validation cohorts were 95.74% and 91.02%, respectively. On multivariable analysis of training cohort, the prognostic factors in the nomogram comprised age, tumor size, lymph node status, molecular subtype, and lymphovascular invasion (LVI). The C-index of our model was 0.75 [95% confidence interval (CI): 0.67-0.83] for the training cohort and 0.71 (95% CI: 0.64-0.78) for the validation cohort. The calibration curves for 5-year DMFS showed good agreement between the model prediction and actual observation. Based on the risk stratification, Kaplan-Meier curves indicated that the low-risk group had significantly better prognosis than the high-risk group (P<0.001).

CONCLUSIONS

Our nomogram can provide an individual prediction of 5-year DMFS in non-metastatic breast cancer patients. This prognostic tool may help clinicians to make appropriate treatment regimens and optimal surveillance plans.

摘要

背景

乳腺癌远处转移(DM)的预后较差。我们的目标是开发并验证一种列线图,以预测非转移性乳腺癌患者的个体无远处转移生存期(DMFS)及风险分层。

方法

该列线图基于对2001年至2014年在中山大学孙逸仙纪念医院接受治疗的1201例乳腺癌患者的分析。通过单因素和多因素分析确定预测因素,该模型在2004年至2012年期间来自广东省人民医院的538例独立队列患者中进行了外部验证。使用一致性指数(C指数)、风险组分层和校准曲线评估该列线图的预测辨别能力和校准能力。

结果

训练队列和验证队列的5年DMFS分别为95.74%和91.02%。在训练队列的多因素分析中,列线图中的预后因素包括年龄、肿瘤大小、淋巴结状态、分子亚型和淋巴管浸润(LVI)。我们模型在训练队列中的C指数为0.75 [95%置信区间(CI):0.67 - 0.83],在验证队列中为0.71(95% CI:0.64 - 0.78)。5年DMFS的校准曲线显示模型预测与实际观察之间具有良好的一致性。基于风险分层,Kaplan-Meier曲线表明低风险组的预后明显优于高风险组(P<0.001)。

结论

我们的列线图可以对非转移性乳腺癌患者的5年DMFS进行个体预测。这种预后工具可能有助于临床医生制定合适的治疗方案和最佳的监测计划。

相似文献

2
Nomogram to Predict the Occurrence and Prognosis of Distant Metastasis in T1N0 Colon Cancer: A SEER Data-Based Study.
Int J Gen Med. 2021 Nov 30;14:9131-9143. doi: 10.2147/IJGM.S335151. eCollection 2021.
7
Development and validation of a nomogram for predicting survival of advanced breast cancer patients in China.
Breast. 2020 Oct;53:172-180. doi: 10.1016/j.breast.2020.08.004. Epub 2020 Aug 12.

引用本文的文献

3
Developing a nomogram model and prognostic analysis of nasopharyngeal squamous cell carcinoma patients: a population-based study.
J Cancer Res Clin Oncol. 2023 Oct;149(13):12165-12175. doi: 10.1007/s00432-023-05120-3. Epub 2023 Jul 10.
5
Implications for surveillance for breast cancer patients based on the internally and externally validated BRENDA-metastatic recurrence score.
Breast Cancer Res Treat. 2023 May;199(1):173-184. doi: 10.1007/s10549-023-06898-z. Epub 2023 Mar 14.
6
The biomarkers related to immune infiltration to predict distant metastasis in breast cancer patients.
Front Genet. 2023 Feb 22;14:1105689. doi: 10.3389/fgene.2023.1105689. eCollection 2023.
8
Construction of nomograms for nasopharyngeal carcinoma containing primary tumor size and SEER stage.
Transl Cancer Res. 2020 Nov;9(11):6939-6954. doi: 10.21037/tcr-20-2080.
9
Multi-Omics Profiling Suggesting Intratumoral Mast Cells as Predictive Index of Breast Cancer Lung Metastasis.
Front Oncol. 2022 Jan 17;11:788778. doi: 10.3389/fonc.2021.788778. eCollection 2021.

本文引用的文献

2
Breast cancer-specific survival by clinical subtype after 7 years follow-up of young and elderly women in a nationwide cohort.
Int J Cancer. 2019 Mar 15;144(6):1251-1261. doi: 10.1002/ijc.31950. Epub 2018 Dec 3.
3
Cathepsin D enhances breast cancer invasion and metastasis through promoting hepsin ubiquitin-proteasome degradation.
Cancer Lett. 2018 Dec 1;438:105-115. doi: 10.1016/j.canlet.2018.09.021. Epub 2018 Sep 15.
4
Predicting prognosis of post-chemotherapy patients with resected IIIA non-small cell lung cancer.
J Thorac Dis. 2018 Jul;10(7):4186-4194. doi: 10.21037/jtd.2018.06.160.
6
A Nomogram for Distinction and Potential Prediction of Liver Metastasis in Breast Cancer Patients.
J Cancer. 2018 May 25;9(12):2098-2106. doi: 10.7150/jca.24445. eCollection 2018.
7
Characteristics and long-term survival of patients diagnosed with pure tubular carcinoma of the breast.
J Surg Oncol. 2018 May;117(6):1137-1143. doi: 10.1002/jso.24944. Epub 2017 Dec 4.
10
Validation of the Web-Based IBTR! 2.0 Nomogram to Predict for Ipsilateral Breast Tumor Recurrence After Breast-Conserving Therapy.
Int J Radiat Oncol Biol Phys. 2016 Aug 1;95(5):1477-1484. doi: 10.1016/j.ijrobp.2016.03.036. Epub 2016 Apr 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验