Suppr超能文献

利用机器学习预测局部区域治疗后乳腺癌患者远处转移的模式。

Predicting Patterns of Distant Metastasis in Breast Cancer Patients following Local Regional Therapy Using Machine Learning.

机构信息

Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada.

Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada.

出版信息

Genes (Basel). 2023 Sep 7;14(9):1768. doi: 10.3390/genes14091768.

Abstract

Up to 30% of breast cancer (BC) patients will develop distant metastases (DM), for which there is no cure. Here, statistical and machine learning (ML) models were developed to estimate the risk of site-specific DM following local-regional therapy. This retrospective study cohort included 175 patients diagnosed with invasive BC who later developed DM. Clinicopathological information was collected for analysis. Outcome variables were the first site of metastasis (brain, bone or visceral) and the time interval (months) to developing DM. Multivariate statistical analysis and ML-based multivariable gradient boosting machines identified factors associated with these outcomes. Machine learning models predicted the site of DM, demonstrating an area under the curve of 0.74, 0.75, and 0.73 for brain, bone and visceral sites, respectively. Overall, most patients (57%) developed bone metastases, with increased odds associated with estrogen receptor (ER) positivity. Human epidermal growth factor receptor-2 (HER2) positivity and non-anthracycline chemotherapy regimens were associated with a decreased risk of bone DM, while brain metastasis was associated with ER-negativity. Furthermore, non-anthracycline chemotherapy alone was a significant predictor of visceral metastasis. Here, clinicopathologic and treatment variables used in ML prediction models predict the first site of metastasis in BC. Further validation may guide focused patient-specific surveillance practices.

摘要

多达 30%的乳腺癌(BC)患者会发生远处转移(DM),目前对此尚无治愈方法。在这里,我们开发了统计和机器学习(ML)模型,以估计局部区域治疗后发生特定部位 DM 的风险。本回顾性研究队列纳入了 175 名诊断为浸润性 BC 且后来发生 DM 的患者。收集了临床病理信息进行分析。结局变量为转移的首发部位(脑、骨或内脏)和发生 DM 的时间间隔(月)。多变量统计分析和基于 ML 的多变量梯度提升机确定了与这些结局相关的因素。机器学习模型预测了 DM 的部位,在脑、骨和内脏部位的曲线下面积分别为 0.74、0.75 和 0.73。总体而言,大多数患者(57%)发生了骨转移,ER 阳性与转移风险增加相关。HER2 阳性和非蒽环类化疗方案与骨 DM 的风险降低相关,而脑转移与 ER 阴性相关。此外,单独使用非蒽环类化疗是内脏转移的显著预测因子。在这里,用于 ML 预测模型的临床病理和治疗变量预测了 BC 的首发转移部位。进一步的验证可能会指导针对特定患者的有针对性的监测实践。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f19/10531341/c8b1eae968f1/genes-14-01768-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验