Manaaki Whenua - Landcare Research, PO Box 69040, Lincoln 7640, New Zealand; Wageningen University & Research, Department of Environmental Sciences, PO Box 47, Wageningen 6700AA, the Netherlands.
Manaaki Whenua - Landcare Research, PO Box 69040, Lincoln 7640, New Zealand; CNRS, Institute for Ecology and Environmental Sciences (IEES), UMR 7618, Batiment EGER, F-78850 Thiverval Grignon, France.
Sci Total Environ. 2020 Feb 20;704:135460. doi: 10.1016/j.scitotenv.2019.135460. Epub 2019 Nov 21.
Evaluation of the temperature sensitivity of soil organic matter (SOM) decomposition is critical for forecasting whether soils in a warming world will lose or gain carbon and, therefore, accelerate or mitigate climate warming. It is usually described, using Arrhenius kinetics, as increasing with the stability of the substrate in laboratory conditions, where substrate availability is non-limiting and where chemical recalcitrance, therefore, predominantly regulates stability. However, conditions of non-limiting subtrate availability are rare in the undisturbed soil, where physicochemical protection of substrates may control their stability. The aim of this study was to assess the temperature sensitivity of decomposition of SOM with contrasting stability in the field. Our conceptual approach was based on in situ measurements of soil CO efflux at a range of temperatures from root exclusion plots of increasing age (1 month and three decades) and, therefore, with SOM of increasing stability. From a set of short-term measurements in spring, using diurnal temperature variation, the relative temperature sensitivity of SOM decomposition decreased significantly (p < 0.0001) with increasing SOM stability, and was weak (Q < 1.3) in long-term root exclusion plots. This result was confirmed in a similar set of short-term measurements repeated later in the year, in summer, as well as from an analysis perfomed at the seasonal timscale. We provide direct field evidence that the temperature sensitivity of SOM decomposition decreases with increasing stability, in direct contrast with Arrhenius kinetics prediction, and therefore show that stability of SOM in the field cannot be the sole result of chemical recalcitrance. We conclude that the physicochemical protection of SOM, which controls SOM stability in the field, constrains the temperature sensitivity of SOM decomposition under field conditions.
评估土壤有机质(SOM)分解的温度敏感性对于预测在变暖的世界中土壤是失去还是获得碳,从而加速还是减缓气候变暖至关重要。通常,在实验室条件下,使用 Arrhenius 动力学来描述这种温度敏感性,即随着底物稳定性的增加而增加,在实验室条件下,底物的可用性不受限制,因此,化学稳定性主要调节稳定性。然而,在未受干扰的土壤中,不存在非限制底物可用性的条件,在未受干扰的土壤中,底物的物理化学保护可能会控制其稳定性。本研究旨在评估具有不同稳定性的 SOM 在野外分解的温度敏感性。我们的概念方法基于在一系列温度下对根排除区(1 个月和三十年)进行原位测量,因此,SOM 的稳定性也在增加。从春季进行的一组短期测量中,利用日温度变化,SOM 分解的相对温度敏感性随着 SOM 稳定性的增加而显著降低(p <0.0001),在长期根排除区中较弱(Q <1.3)。这一结果在同年晚些时候夏季进行的一组类似的短期测量以及在季节性时间尺度上进行的分析中得到了证实。我们提供了直接的野外证据,表明 SOM 分解的温度敏感性随着稳定性的增加而降低,这与 Arrhenius 动力学的预测直接相反,因此表明,SOM 在野外的稳定性不能仅仅是化学稳定性的结果。我们得出结论,控制 SOM 稳定性的 SOM 的物理化学保护在野外条件下限制了 SOM 分解的温度敏感性。