Suppr超能文献

将土壤有机质分解的温度敏感性与其分子结构、可及性和微生物生理学联系起来。

Linking temperature sensitivity of soil organic matter decomposition to its molecular structure, accessibility, and microbial physiology.

机构信息

National Institute for Agro-Environmental Sciences, Tsukuba, Ibaraki, Japan.

出版信息

Glob Chang Biol. 2013 Apr;19(4):1114-25. doi: 10.1111/gcb.12112. Epub 2013 Jan 29.

Abstract

Temperature sensitivity of soil organic matter (SOM) decomposition may have a significant impact on global warming. Enzyme-kinetic hypothesis suggests that decomposition of low-quality substrate (recalcitrant molecular structure) requires higher activation energy and thus has greater temperature sensitivity than that of high-quality, labile substrate. Supporting evidence, however, relies largely on indirect indices of substrate quality. Furthermore, the enzyme-substrate reactions that drive decomposition may be regulated by microbial physiology and/or constrained by protective effects of soil mineral matrix. We thus tested the kinetic hypothesis by directly assessing the carbon molecular structure of low-density fraction (LF) which represents readily accessible, mineral-free SOM pool. Using five mineral soil samples of contrasting SOM concentrations, we conducted 30-days incubations (15, 25, and 35 °C) to measure microbial respiration and quantified easily soluble C as well as microbial biomass C pools before and after the incubations. Carbon structure of LFs (<1.6 and 1.6-1.8 g cm(-3) ) and bulk soil was measured by solid-state (13) C-NMR. Decomposition Q10 was significantly correlated with the abundance of aromatic plus alkyl-C relative to O-alkyl-C groups in LFs but not in bulk soil fraction or with the indirect C quality indices based on microbial respiration or biomass. The warming did not significantly change the concentration of biomass C or the three types of soluble C despite two- to three-fold increase in respiration. Thus, enhanced microbial maintenance respiration (reduced C-use efficiency) especially in the soils rich in recalcitrant LF might lead to the apparent equilibrium between SOM solubilization and microbial C uptake. Our results showed physical fractionation coupled with direct assessment of molecular structure as an effective approach and supported the enzyme-kinetic interpretation of widely observed C quality-temperature relationship for short-term decomposition. Factors controlling long-term decomposition Q10 are more complex due to protective effect of mineral matrix and thus remain as a central question.

摘要

土壤有机质(SOM)分解的温度敏感性可能对全球变暖产生重大影响。酶动力学假说表明,低质量底物(具有顽固分子结构)的分解需要更高的活化能,因此比高质量、易降解的底物具有更大的温度敏感性。然而,支持这一假说的证据主要依赖于底物质量的间接指标。此外,驱动分解的酶-底物反应可能受到微生物生理学的调节和/或受土壤矿物基质的保护作用的限制。因此,我们通过直接评估低密度(LF)部分的碳分子结构来检验该动力学假说,LF 代表易于获取的、无矿物质的 SOM 库。使用五个具有不同 SOM 浓度的矿物土壤样本,我们进行了 30 天的培养实验(15、25 和 35°C),以测量微生物呼吸并在培养前后量化易溶性 C 和微生物生物量 C 库。使用固态(13)C-NMR 测量 LF(<1.6 和 1.6-1.8 g cm(-3))和原状土壤的碳结构。LF 中芳香族加烷基-C 与 O-烷基-C 基团的相对丰度与 Q10 显著相关,但与原状土壤部分或基于微生物呼吸或生物量的间接 C 质量指数无关。尽管呼吸增加了两到三倍,但升温并没有显著改变生物量 C 或三种可溶性 C 的浓度。因此,富含顽固 LF 的土壤中微生物维持呼吸的增强(降低 C 利用效率)可能导致 SOM 溶解和微生物 C 吸收之间的明显平衡。我们的结果表明,物理分级结合对分子结构的直接评估是一种有效的方法,并支持了广泛观察到的短期分解中 C 质量-温度关系的酶动力学解释。由于矿物基质的保护作用,控制长期分解 Q10 的因素更加复杂,因此仍然是一个核心问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验