The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center , New York Structural Biology Center , New York , New York 10027 , United States.
ACS Appl Mater Interfaces. 2020 Jan 8;12(1):151-162. doi: 10.1021/acsami.9b16150. Epub 2019 Dec 24.
Poly(ethylene glycol) (PEG) is a polymer used widely in drug delivery to create "stealth" nanoparticles (NPs); PEG coatings suppress NP detection and clearance by the immune system and beneficially increase NP circulation time in vivo. However, NP PEGylation typically obstructs cell attachment and uptake in vitro compared to the uncoated equivalent. Here, we report on a cationic liposome (CL) NP system loaded with the hydrophobic cancer drug paclitaxel (PTX) in which PEGylation (i.e., PEG-CL NPs) unexpectedly enhances, rather than diminishes, delivery efficacy and cytotoxicity to human cancer cells. This highly unexpected enhancement occurs even when the PEG-chains coating the NP are in the transition regime between the mushroom and brush conformations. Cryogenic transmission electron microscopy (TEM) of PEG-CL NPs shows that PEG causes the proliferation of a mixture of sterically stabilized nanometer-scale vesicles and anisotropic micelles (e.g., bicelles). Remarkably, the onset of bicelles at sub-monolayer concentrations of the PEG coat has to our knowledge not been previously reported; it was previously thought that PEG-lipid in this composition regime was incorporated into vesicles but did not alter their shape. Confocal microscopy and flow cytometry reveal significantly greater PTX cell uptake from stabilized PEG-CL NPs (vesicles and bicelles) in contrast to bare CL NPs, which can aggregate in cell medium. This underscores the ability of steric stabilization to facilitate NP entry into cells via distinct size-dependent endocytic pathways, some of which cannot transport large NP aggregates into cells. This study highlights the value of understanding how PEGylation alters NP shape and structure, and thus NP efficacy, to design next-generation stealth drug carriers that integrate active cell-targeting strategies into NPs for in vivo delivery.
聚乙二醇(PEG)是一种在药物输送中广泛使用的聚合物,用于制造“隐形”纳米颗粒(NPs);PEG 涂层抑制了 NP 被免疫系统的检测和清除,并有利地增加了 NP 在体内的循环时间。然而,与未涂层的 NP 相比,NP 的 PEG 化通常会阻碍细胞在体外的附着和摄取。在这里,我们报告了一种负载疏水性抗癌药物紫杉醇(PTX)的阳离子脂质体(CL)NP 系统,其中 PEG 化(即 PEG-CL NPs)出人意料地增强了,而不是减弱了,对人类癌细胞的递送效果和细胞毒性。这种出乎意料的增强作用甚至发生在 NP 表面的 PEG 链处于蘑菇和刷形构象之间的转变区时。PEG-CL NPs 的低温透射电子显微镜(TEM)显示,PEG 导致具有空间稳定的纳米级囊泡和各向异性胶束(例如双胶束)的混合物的增殖。值得注意的是,PEG 壳层亚单层浓度下双胶束的出现据我们所知尚未有报道;以前认为,在这种组成范围内的 PEG-脂质被包含在囊泡中,但不会改变它们的形状。共聚焦显微镜和流式细胞术显示,与裸 CL NPs 相比,稳定的 PEG-CL NPs(囊泡和双胶束)中的 PTX 细胞摄取显著增加,而裸 CL NPs 在细胞培养基中会聚集。这突出了空间稳定化促进 NP 通过不同的大小依赖性内吞途径进入细胞的能力,其中一些途径不能将大的 NP 聚集物输送到细胞中。这项研究强调了理解 PEG 化如何改变 NP 的形状和结构,从而改变 NP 的功效,以设计下一代隐形药物载体的重要性,这些载体将主动的细胞靶向策略整合到 NP 中,用于体内输送。