Suppr超能文献

聚乙二醇化的紫杉醇负载阳离子脂质体驱动双胶束和囊泡的空间稳定化,从而增强了对人类癌细胞的递送和细胞毒性。

PEGylation of Paclitaxel-Loaded Cationic Liposomes Drives Steric Stabilization of Bicelles and Vesicles thereby Enhancing Delivery and Cytotoxicity to Human Cancer Cells.

机构信息

The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center , New York Structural Biology Center , New York , New York 10027 , United States.

出版信息

ACS Appl Mater Interfaces. 2020 Jan 8;12(1):151-162. doi: 10.1021/acsami.9b16150. Epub 2019 Dec 24.

Abstract

Poly(ethylene glycol) (PEG) is a polymer used widely in drug delivery to create "stealth" nanoparticles (NPs); PEG coatings suppress NP detection and clearance by the immune system and beneficially increase NP circulation time in vivo. However, NP PEGylation typically obstructs cell attachment and uptake in vitro compared to the uncoated equivalent. Here, we report on a cationic liposome (CL) NP system loaded with the hydrophobic cancer drug paclitaxel (PTX) in which PEGylation (i.e., PEG-CL NPs) unexpectedly enhances, rather than diminishes, delivery efficacy and cytotoxicity to human cancer cells. This highly unexpected enhancement occurs even when the PEG-chains coating the NP are in the transition regime between the mushroom and brush conformations. Cryogenic transmission electron microscopy (TEM) of PEG-CL NPs shows that PEG causes the proliferation of a mixture of sterically stabilized nanometer-scale vesicles and anisotropic micelles (e.g., bicelles). Remarkably, the onset of bicelles at sub-monolayer concentrations of the PEG coat has to our knowledge not been previously reported; it was previously thought that PEG-lipid in this composition regime was incorporated into vesicles but did not alter their shape. Confocal microscopy and flow cytometry reveal significantly greater PTX cell uptake from stabilized PEG-CL NPs (vesicles and bicelles) in contrast to bare CL NPs, which can aggregate in cell medium. This underscores the ability of steric stabilization to facilitate NP entry into cells via distinct size-dependent endocytic pathways, some of which cannot transport large NP aggregates into cells. This study highlights the value of understanding how PEGylation alters NP shape and structure, and thus NP efficacy, to design next-generation stealth drug carriers that integrate active cell-targeting strategies into NPs for in vivo delivery.

摘要

聚乙二醇(PEG)是一种在药物输送中广泛使用的聚合物,用于制造“隐形”纳米颗粒(NPs);PEG 涂层抑制了 NP 被免疫系统的检测和清除,并有利地增加了 NP 在体内的循环时间。然而,与未涂层的 NP 相比,NP 的 PEG 化通常会阻碍细胞在体外的附着和摄取。在这里,我们报告了一种负载疏水性抗癌药物紫杉醇(PTX)的阳离子脂质体(CL)NP 系统,其中 PEG 化(即 PEG-CL NPs)出人意料地增强了,而不是减弱了,对人类癌细胞的递送效果和细胞毒性。这种出乎意料的增强作用甚至发生在 NP 表面的 PEG 链处于蘑菇和刷形构象之间的转变区时。PEG-CL NPs 的低温透射电子显微镜(TEM)显示,PEG 导致具有空间稳定的纳米级囊泡和各向异性胶束(例如双胶束)的混合物的增殖。值得注意的是,PEG 壳层亚单层浓度下双胶束的出现据我们所知尚未有报道;以前认为,在这种组成范围内的 PEG-脂质被包含在囊泡中,但不会改变它们的形状。共聚焦显微镜和流式细胞术显示,与裸 CL NPs 相比,稳定的 PEG-CL NPs(囊泡和双胶束)中的 PTX 细胞摄取显著增加,而裸 CL NPs 在细胞培养基中会聚集。这突出了空间稳定化促进 NP 通过不同的大小依赖性内吞途径进入细胞的能力,其中一些途径不能将大的 NP 聚集物输送到细胞中。这项研究强调了理解 PEG 化如何改变 NP 的形状和结构,从而改变 NP 的功效,以设计下一代隐形药物载体的重要性,这些载体将主动的细胞靶向策略整合到 NP 中,用于体内输送。

相似文献

2
Paclitaxel-Loaded Cationic Fluid Lipid Nanodiscs and Liposomes with Brush-Conformation PEG Chains Penetrate Breast Tumors and Trigger Caspase-3 Activation.
ACS Appl Mater Interfaces. 2022 Dec 28;14(51):56613-56622. doi: 10.1021/acsami.2c17961. Epub 2022 Dec 15.
3
Transferrin functionalized chitosan-PEG nanoparticles for targeted delivery of paclitaxel to cancer cells.
Colloids Surf B Biointerfaces. 2016 Dec 1;148:363-370. doi: 10.1016/j.colsurfb.2016.08.059. Epub 2016 Aug 31.
5
Folate and Pegylated Aliphatic Polyester Nanoparticles for Targeted Anticancer Drug Delivery.
Int J Nanomedicine. 2020 Jul 10;15:4899-4918. doi: 10.2147/IJN.S244712. eCollection 2020.
6
Synthesis of linear and cyclic peptide-PEG-lipids for stabilization and targeting of cationic liposome-DNA complexes.
Bioorg Med Chem Lett. 2016 Mar 15;26(6):1618-1623. doi: 10.1016/j.bmcl.2016.01.079. Epub 2016 Feb 4.
7
The effect of poly(ethylene glycol) coating and monomer type on poly(alkyl cyanoacrylate) nanoparticle interactions with lipid monolayers and cells.
Colloids Surf B Biointerfaces. 2017 Feb 1;150:373-383. doi: 10.1016/j.colsurfb.2016.10.051. Epub 2016 Oct 31.
8
Assembly of Building Blocks by Double-End-Anchored Polymers in the Dilute Regime Mediated by Hydrophobic Interactions at Controlled Distances.
ACS Appl Mater Interfaces. 2020 Oct 14;12(41):45728-45743. doi: 10.1021/acsami.0c10972. Epub 2020 Oct 5.
10
Folate-modified lipid-polymer hybrid nanoparticles for targeted paclitaxel delivery.
Int J Nanomedicine. 2015 Mar 16;10:2101-14. doi: 10.2147/IJN.S77667. eCollection 2015.

引用本文的文献

1
High-Efficiency Drug Loading in Lipid Vesicles by MEMS-Driven Gigahertz Acoustic Streaming.
Micromachines (Basel). 2025 May 7;16(5):562. doi: 10.3390/mi16050562.
2
Impact of PEGylated liposomes on cytotoxicity of tamoxifen and piperine on MCF-7 human breast carcinoma cells.
J Drug Deliv Sci Technol. 2024 Dec;102(Pt A). doi: 10.1016/j.jddst.2024.106331. Epub 2024 Oct 25.
3
Prospective effect of linkers type on the anticancer activity of pemetrexed-monoclonal antibody (atezolizumab) conjugates.
F1000Res. 2024 Mar 11;12:1197. doi: 10.12688/f1000research.140284.2. eCollection 2023.
5
Revolutionizing rheumatoid arthritis therapy: harnessing cytomembrane biomimetic nanoparticles for novel treatment strategies.
Drug Deliv Transl Res. 2025 Jan;15(1):66-83. doi: 10.1007/s13346-024-01605-x. Epub 2024 May 17.
6
Enhancing the efficacy of letrozole-loaded PEGylated nanoliposomes against breast cancer cells: study.
Heliyon. 2024 Apr 30;10(9):e30503. doi: 10.1016/j.heliyon.2024.e30503. eCollection 2024 May 15.
7
Lipids with negative spontaneous curvature decrease the solubility of the cancer drug paclitaxel in liposomes.
Eur Phys J E Soft Matter. 2023 Dec 15;46(12):128. doi: 10.1140/epje/s10189-023-00388-2.
10
Development of Robust Cationic Light-Activated Thermosensitive Liposomes: Choosing the Right Lipids.
Mol Pharm. 2023 Nov 6;20(11):5728-5738. doi: 10.1021/acs.molpharmaceut.3c00602. Epub 2023 Oct 24.

本文引用的文献

1
Progress and challenges towards targeted delivery of cancer therapeutics.
Nat Commun. 2018 Apr 12;9(1):1410. doi: 10.1038/s41467-018-03705-y.
2
Competition of charge-mediated and specific binding by peptide-tagged cationic liposome-DNA nanoparticles in vitro and in vivo.
Biomaterials. 2018 Jun;166:52-63. doi: 10.1016/j.biomaterials.2018.02.052. Epub 2018 Mar 2.
4
Preclinical development of drug delivery systems for paclitaxel-based cancer chemotherapy.
J Control Release. 2017 Dec 10;267:100-118. doi: 10.1016/j.jconrel.2017.09.026. Epub 2017 Sep 25.
6
Form Follows Function: Nanoparticle Shape and Its Implications for Nanomedicine.
Chem Rev. 2017 Sep 13;117(17):11476-11521. doi: 10.1021/acs.chemrev.7b00194. Epub 2017 Sep 1.
7
Paclitaxel: What has been done and the challenges remain ahead.
Int J Pharm. 2017 Jun 30;526(1-2):474-495. doi: 10.1016/j.ijpharm.2017.05.016. Epub 2017 May 10.
8
Lipid Nanoparticle Systems for Enabling Gene Therapies.
Mol Ther. 2017 Jul 5;25(7):1467-1475. doi: 10.1016/j.ymthe.2017.03.013. Epub 2017 Apr 13.
9
The battle of "nano" paclitaxel.
Adv Drug Deliv Rev. 2017 Dec 1;122:20-30. doi: 10.1016/j.addr.2017.02.003. Epub 2017 Feb 28.
10
Synthesis of linear and cyclic peptide-PEG-lipids for stabilization and targeting of cationic liposome-DNA complexes.
Bioorg Med Chem Lett. 2016 Mar 15;26(6):1618-1623. doi: 10.1016/j.bmcl.2016.01.079. Epub 2016 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验