Suppr超能文献

通过微机电系统驱动的千兆赫兹声流在脂质囊泡中实现高效药物负载。

High-Efficiency Drug Loading in Lipid Vesicles by MEMS-Driven Gigahertz Acoustic Streaming.

作者信息

Li Bingxuan, Wang Haopu, Wang Zhen, Xie Huikai, Lu Yao

机构信息

School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China.

Engineering Research Center of Integrated Acoustic-Opto-Electronic Microsystems (Ministry of Education of China), Beijing 100081, China.

出版信息

Micromachines (Basel). 2025 May 7;16(5):562. doi: 10.3390/mi16050562.

Abstract

Drug carriers hold significant promise for precision medicine but face persistent challenges in balancing high encapsulation efficiency with structural preservation during active loading. In this study, we present a microelectromechanical system (MEMS)-driven platform that can generate gigahertz (GHz)-frequency acoustic streaming (1.55 GHz) to enable nondestructive, power-tunable drug encapsulation in lipid vesicles. Utilizing DSPE-PEG-modified bilayers with hydrodynamic shear forces, our method achieves transient membrane permeability that preserves membrane integrity while permitting controlled doxorubicin (DOX) influx. We developed the GHz acoustic MEMS platform and applied it to systematically investigate two drug loading strategies: (1) loading DOX into giant unilamellar vesicles (GUVs, >10 μm in diameter) prior to extrusion into small unilamellar vesicles (SUVs, 100 nm) versus (2) direct acoustic loading into pre-formed SUVs. The GUV-first approach demonstrated better performance, achieving 60.04% ± 1.55% encapsulation efficiency (EE%) at 250 mW acoustic power-a 5.93% enhancement over direct SUV loading (54.11% ± 0.72%). Structural analysis via TEM confirmed intact SUV morphology post-loading, while power-dependent EE% analysis showed a linear trend. This work bridges gaps in nanocarrier engineering by optimizing drug loading strategies, aiming to offer a potential drug carrier platform for drug delivery in biomedical treatment in future.

摘要

药物载体在精准医学方面具有巨大潜力,但在主动加载过程中,要在高封装效率与结构保存之间取得平衡仍面临持续挑战。在本研究中,我们展示了一种微机电系统(MEMS)驱动的平台,该平台可产生千兆赫兹(GHz)频率的声流(1.55 GHz),以实现脂质体中药物的无损、功率可调封装。利用具有流体动力剪切力的DSPE-PEG修饰双层膜,我们的方法实现了瞬时膜通透性,在保持膜完整性的同时允许阿霉素(DOX)的可控流入。我们开发了GHz声学MEMS平台,并将其应用于系统研究两种药物加载策略:(1)在挤压成小单层囊泡(SUV,直径100 nm)之前,将DOX加载到巨型单层囊泡(GUV,直径>10 μm)中,与(2)直接声学加载到预先形成的SUV中。先加载GUV的方法表现出更好的性能,在250 mW声功率下实现了60.04%±1.55%的封装效率(EE%)——比直接加载到SUV中(54.11%±0.72%)提高了5.93%。通过透射电子显微镜(TEM)进行的结构分析证实了加载后SUV形态完整,而功率依赖性EE%分析显示出线性趋势。这项工作通过优化药物加载策略弥合了纳米载体工程中的差距,旨在为未来生物医学治疗中的药物递送提供一个潜在的药物载体平台。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验