Suppr超能文献

细胞外基质在胰腺组织生物力学行为中的作用。

Role of extracellular matrix in the biomechanical behavior of pancreatic tissue.

作者信息

Hudnut Alexa W, Lash-Rosenberg Lian, Xin An, Doblado Juan A Leal, Zurita-Lopez Cecilia, Wang Qiming, Armani Andrea M

机构信息

Department of Biomedical Engineering, University of Southern California, 1002 Childs Way, MCB 495, Los Angeles, CA, 90089.

Department of Mechanical Engineering, University of Southern California, 1002 Childs Way, MCB 495, Los Angeles, CA, 90089.

出版信息

ACS Biomater Sci Eng. 2018 May 14;4(5):1916-1923. doi: 10.1021/acsbiomaterials.8b00349. Epub 2018 Mar 27.

Abstract

Correlating the biomechanical properties of tissue with its function is an emerging area of research with potential impact in diagnostics, therapeutics, and prognostics. A critical stepping-stone in developing structure-function models is creating methods that can correlate the tissue structure with its mechanical behavior. As an initial step in addressing this challenge, we have characterized the mechanical behavior of unprocessed pancreatic tissue using optical fiber polarimetric elastography. To correlate the observed behavior to physiologically relevant structural features, a series of architectures are designed and fabricated using 3D printing. The mechanical response of the 3D printed elastomeric structures is analyzed using compressive testing and modeled using finite element analysis. The biomechanical behavior and buckling point of the 3D printed structures is used to create a calibration curve to understand the measured response of the resected pancreatic tissue. Based on the modeling and biomimetic results, the biomechanical behavior of pancreatic tissue is likely due to the collagen IV network.

摘要

将组织的生物力学特性与其功能相关联是一个新兴的研究领域,在诊断、治疗和预后方面具有潜在影响。开发结构-功能模型的一个关键步骤是创建能够将组织结构与其力学行为相关联的方法。作为应对这一挑战的第一步,我们使用光纤偏振弹性成像技术对未处理的胰腺组织的力学行为进行了表征。为了将观察到的行为与生理相关的结构特征相关联,使用3D打印设计并制造了一系列结构。使用压缩测试分析3D打印弹性体结构的力学响应,并使用有限元分析进行建模。3D打印结构的生物力学行为和屈曲点用于创建校准曲线,以了解切除的胰腺组织的测量响应。基于建模和仿生结果,胰腺组织的生物力学行为可能归因于IV型胶原网络。

相似文献

1
Role of extracellular matrix in the biomechanical behavior of pancreatic tissue.
ACS Biomater Sci Eng. 2018 May 14;4(5):1916-1923. doi: 10.1021/acsbiomaterials.8b00349. Epub 2018 Mar 27.
3
3D printed structures for modeling the Young's modulus of bamboo parenchyma.
Acta Biomater. 2018 Mar 1;68:90-98. doi: 10.1016/j.actbio.2017.12.036. Epub 2017 Dec 30.
4
Comparison of three-dimensional printing and vacuum freeze-dried techniques for fabricating composite scaffolds.
Biochem Biophys Res Commun. 2016 Sep 2;477(4):1085-1091. doi: 10.1016/j.bbrc.2016.07.050. Epub 2016 Jul 9.
5
Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications.
J Zhejiang Univ Sci B. 2019;20(8):647-659. doi: 10.1631/jzus.B1800622.
7
Can We Improve Vaginal Tissue Healing Using Customized Devices: 3D Printing and Biomechanical Changes in Vaginal Tissue.
Gynecol Obstet Invest. 2019;84(2):145-153. doi: 10.1159/000491696. Epub 2018 Sep 28.
8
A novel breast software phantom for biomechanical modeling of elastography.
Med Phys. 2012 Apr;39(4):1748-68. doi: 10.1118/1.3690467.
10
Creation of internal structure of mashed potato construct by 3D printing and its textural properties.
Food Res Int. 2018 Sep;111:534-543. doi: 10.1016/j.foodres.2018.05.075. Epub 2018 May 31.

引用本文的文献

1
Unique Role of Vimentin Networks in Compression Stiffening of Cells and Protection of Nuclei from Compressive Stress.
Nano Lett. 2022 Jun 22;22(12):4725-4732. doi: 10.1021/acs.nanolett.2c00736. Epub 2022 Jun 9.
2
Photopolymerizable Biomaterials and Light-Based 3D Printing Strategies for Biomedical Applications.
Chem Rev. 2020 Oct 14;120(19):10695-10743. doi: 10.1021/acs.chemrev.9b00810. Epub 2020 Apr 23.

本文引用的文献

1
Characterization of the mechanical properties of resected porcine organ tissue using optical fiber photoelastic polarimetry.
Biomed Opt Express. 2017 Sep 25;8(10):4663-4670. doi: 10.1364/BOE.8.004663. eCollection 2017 Oct 1.
3
Buckling of Carbon Nanotubes: A State of the Art Review.
Materials (Basel). 2011 Dec 28;5(1):47-84. doi: 10.3390/ma5010047.
5
Discrete quasi-linear viscoelastic damping analysis of connective tissues, and the biomechanics of stretching.
J Mech Behav Biomed Mater. 2017 May;69:193-202. doi: 10.1016/j.jmbbm.2016.12.013. Epub 2016 Dec 22.
6
Highly-stretchable 3D-architected Mechanical Metamaterials.
Sci Rep. 2016 Sep 26;6:34147. doi: 10.1038/srep34147.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验