Suppr超能文献

光聚合生物材料和基于光的 3D 打印策略在生物医学中的应用。

Photopolymerizable Biomaterials and Light-Based 3D Printing Strategies for Biomedical Applications.

机构信息

Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States.

Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States.

出版信息

Chem Rev. 2020 Oct 14;120(19):10695-10743. doi: 10.1021/acs.chemrev.9b00810. Epub 2020 Apr 23.

Abstract

Since the advent of additive manufacturing, known commonly as 3D printing, this technology has revolutionized the biofabrication landscape and driven numerous pivotal advancements in tissue engineering and regenerative medicine. Many 3D printing methods were developed in short course after Charles Hull first introduced the power of stereolithography to the world. However, materials development was not met with the same enthusiasm and remained the bottleneck in the field for some time. Only in the past decade has there been deliberate development to expand the materials toolbox for 3D printing applications to meet the true potential of 3D printing technologies. Herein, we review the development of biomaterials suited for light-based 3D printing modalities with an emphasis on bioprinting applications. We discuss the chemical mechanisms that govern photopolymerization and highlight the application of natural, synthetic, and composite biomaterials as 3D printed hydrogels. Because the quality of a 3D printed construct is highly dependent on both the material properties and processing technique, we included a final section on the theoretical and practical aspects behind light-based 3D printing as well as ways to employ that knowledge to troubleshoot and standardize the optimization of printing parameters.

摘要

自增材制造(俗称 3D 打印)问世以来,这项技术彻底改变了生物制造领域的格局,并推动了组织工程和再生医学领域的众多重大进展。在查尔斯·赫尔(Charles Hull)首次向世界展示立体光固化技术的威力之后,许多 3D 打印方法在短时间内相继问世。然而,材料的发展并没有得到同样的重视,并且在一段时间内仍然是该领域的瓶颈。直到过去十年,才有了为满足 3D 打印技术的真正潜力而专门进行的材料开发,以扩大 3D 打印应用的材料工具箱。在此,我们回顾了适合基于光的 3D 打印模式的生物材料的发展,重点介绍了生物打印应用。我们讨论了控制光聚合的化学机制,并强调了天然、合成和复合材料作为 3D 打印水凝胶的应用。由于 3D 打印结构的质量高度依赖于材料性能和加工技术,因此我们在最后一节中介绍了基于光的 3D 打印背后的理论和实际方面,以及如何利用这些知识来解决问题和标准化打印参数的优化。

相似文献

3
Chitosan hydrogels in 3D printing for biomedical applications.壳聚糖水凝胶在 3D 打印中的生物医学应用。
Carbohydr Polym. 2021 May 15;260:117768. doi: 10.1016/j.carbpol.2021.117768. Epub 2021 Feb 10.

引用本文的文献

1
Microbial living materials promote coral larval settlement.微生物活性材料促进珊瑚幼虫附着。
PNAS Nexus. 2025 Sep 9;4(9):pgaf268. doi: 10.1093/pnasnexus/pgaf268. eCollection 2025 Sep.
2
Light-based vat-polymerization bioprinting.基于光的光固化生物打印
Nat Rev Methods Primers. 2023;3. doi: 10.1038/s43586-023-00231-0. Epub 2023 Jun 22.
5
Advanced cell-adaptable hydrogels for bioprinting.用于生物打印的先进细胞适应性水凝胶
Bioact Mater. 2025 Aug 6;53:831-854. doi: 10.1016/j.bioactmat.2025.07.044. eCollection 2025 Nov.
9
Biophotonic (nano)structures: from fundamentals to emerging applications.生物光子(纳米)结构:从基础到新兴应用
RSC Adv. 2025 Jul 22;15(32):26138-26172. doi: 10.1039/d5ra03288a. eCollection 2025 Jul 21.
10
Lithography-based 3D printing of hydrogels.基于光刻的水凝胶3D打印
Nat Rev Bioeng. 2025 Feb;3(2):108-125. doi: 10.1038/s44222-024-00251-9. Epub 2024 Oct 16.

本文引用的文献

3
Design and 3D Printing of Hydrogel Scaffolds with Fractal Geometries.具有分形几何形状的水凝胶支架的设计与3D打印
ACS Biomater Sci Eng. 2016 Oct 10;2(10):1763-1770. doi: 10.1021/acsbiomaterials.6b00140. Epub 2016 Jun 2.
6
Advanced 4D Bioprinting Technologies for Brain Tissue Modeling and Study.用于脑组织建模与研究的先进4D生物打印技术
Int J Smart Nano Mater. 2019;10(3):177-204. doi: 10.1080/19475411.2019.1631899. Epub 2019 Jul 3.
7
High-fidelity 3D Printing using Flashing Photopolymerization.使用闪光光聚合的高保真3D打印
Addit Manuf. 2019 Dec;30. doi: 10.1016/j.addma.2019.100834. Epub 2019 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验