Suppr超能文献

慢性抗抑郁治疗中神经适应性治疗的单胺能神经递质和男性神经内分泌系统的计算建模分析

Computational modeling of the monoaminergic neurotransmitter and male neuroendocrine systems in an analysis of therapeutic neuroadaptation to chronic antidepressant.

机构信息

Neuroscience Program, University of Illinois at Urbana-Champaign, and Medical Scholars Program, University of Illinois College of Medicine at Urbana-Champaign, Urbana, IL, USA.

Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA.

出版信息

Eur Neuropsychopharmacol. 2020 Feb;31:86-99. doi: 10.1016/j.euroneuro.2019.11.003. Epub 2019 Dec 9.

Abstract

Second-line depression treatment involves augmentation with one (rarely two) additional drugs, of chronic administration of a selective serotonin reuptake inhibitor (SSRI), which is the first-line depression treatment. Unfortunately, many depressed patients still fail to respond even after months to years of searching to find an effective combination. To aid in the identification of potentially effective antidepressant combinations, we created a computational model of the monoaminergic neurotransmitter (serotonin, norepinephrine, and dopamine), stress-hormone (cortisol), and male sex hormone (testosterone) systems. The model was trained via machine learning to represent a broad range of empirical observations. Neuroadaptation to chronic drug administration was simulated through incremental adjustments in model parameters that corresponded to key regulatory components of the neurotransmitter and neurohormone systems. Analysis revealed that neuroadaptation in the model depended on all of the regulatory components in complicated ways, and did not reveal any one or a few specific components that could be targeted in the design of antidepressant treatments. We used large sets of neuroadapted states of the model to screen 74 different drug and hormone combinations and identified several combinations that could potentially be therapeutic for a higher proportion of male patients than SSRIs by themselves.

摘要

二线抑郁症治疗包括在慢性服用选择性 5-羟色胺再摄取抑制剂(SSRIs)的基础上添加一种(很少两种)额外药物进行增效。SSRIs 是一线抑郁症治疗药物。不幸的是,许多抑郁症患者即使经过数月甚至数年的寻找,仍然无法找到有效的组合。为了帮助确定潜在有效的抗抑郁药组合,我们创建了一个单胺能神经递质(5-羟色胺、去甲肾上腺素和多巴胺)、应激激素(皮质醇)和男性性激素(睾酮)系统的计算模型。该模型通过机器学习进行训练,以代表广泛的经验观察。通过对应于神经递质和神经激素系统关键调节成分的模型参数的增量调整,模拟慢性药物治疗的神经适应。分析表明,模型中的神经适应以复杂的方式取决于所有调节成分,并且没有发现任何一个或几个特定的成分可以作为抗抑郁治疗设计的目标。我们使用模型的大量神经适应状态对 74 种不同的药物和激素组合进行筛选,并确定了一些组合,这些组合可能比 SSRIs 本身对更高比例的男性患者具有潜在的治疗作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验