Suppr超能文献

基于时变时滞的复值忆阻神经网络的事件触发指数同步。

Event-Triggered Exponential Synchronization for Complex-Valued Memristive Neural Networks With Time-Varying Delays.

出版信息

IEEE Trans Neural Netw Learn Syst. 2020 Oct;31(10):4104-4116. doi: 10.1109/TNNLS.2019.2952186. Epub 2019 Dec 11.

Abstract

This article solves the event-triggered exponential synchronization problem for a class of complex-valued memristive neural networks with time-varying delays. The drive-response complex-valued memristive neural networks are translated into two real-valued memristive neural networks through the method of separating the complex-valued memristive neural networks into real and imaginary parts. In order to reduce the information exchange frequency between the sensor and the controller, a novel event-triggered mechanism with the event-triggering functions is introduced in wireless communication networks. Some sufficient conditions are established to achieve the event-triggered exponential synchronization for drive-response complex-valued memristive neural networks with time-varying delays. In addition, to guarantee that the Zeno behavior cannot occur, a positive lower bound for the interevent times is explicitly derived. Finally, numerical simulations are provided to illustrate the effectiveness and superiority of the obtained theoretical results.

摘要

本文解决了一类时变时滞复值忆阻神经网络的事件触发指数同步问题。通过将复值忆阻神经网络分解为实部和虚部的方法,将驱动-响应复值忆阻神经网络转化为两个实值忆阻神经网络。为了降低传感器和控制器之间的信息交换频率,在无线通信网络中引入了一种具有事件触发函数的新型事件触发机制。建立了一些充分条件,以实现时变时滞驱动-响应复值忆阻神经网络的事件触发指数同步。此外,为了保证不能发生零和行为,明确推导了事件间时间的正下界。最后,通过数值模拟验证了所得到的理论结果的有效性和优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验